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1 Executive Summary 

This document outlines the progress and findings of the CONFESS project, focusing on integrating 

human-induced changes in land use and vegetation variability into seasonal forecast systems. Recent 

advancements in processing historical datasets have allowed for improved representation of temporal 

variability in seasonal forecasts. The primary objective is to evaluate the impact of these datasets and 

parameterizations on seasonal and decadal predictions and formulate recommendations for their 

integration into the next generation of the Copernicus Climate Change Service (C3S) systems. Notable 

findings include the limited impact of temporal variations in Land Use/Land Cover (LULC) on forecast 

skill but substantial influence on trend representation. Time-varying vegetation, both prognostic and 

prescribed, significantly impacts seasonal forecast skill, with diversity in the effects across systems and 

locations. Time-varying Leaf Area Index (LAI) compensates for LULC effects after 2000, balancing 

trends in certain regions but with exceptions. Additionally, it amplifies heat extremes in specific cases. 

Decadal predictions show improved skill, particularly in boreal winters. Recommendations include 

further research on temporal variations, understanding vegetation/atmospheric feedbacks, model 

improvements, and cautious operational implementation. While progress is evident, ongoing work is 

needed before full integration into operational forecasts is maximized. 
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2 Introduction 

2.1 Background 

Representing human-induced changes in land use and vegetation variability within physically based 

seasonal forecast systems has remained a blind spot of recent developments. The inability to model 

these processes prognostically has led to their exclusion from operational systems, resulting in a 

deficiency in monitoring and prediction. The lack of reliable temporal records further hinders the 

inclusion of temporal variations in the forecast systems included in Copernicus Climate Change Service 

(C3S) . Recent advances in reprocessing historical datasets for vegetation and land cover have offered 

an opportunity to improve the representation of temporal variability in seasonal forecasts. Since the 

beginning of the CONFESS project, state-of-the-art observational vegetation and land use datasets 

have been processed, evaluated and uptaken into land surface models. More specifically, substantial 

efforts have been made on improving a parameterization of the vegetation cover, processing and 

testing the disaggregation of vegetation observational datasets into model plant functional types, and 

assessing the validity of a prognostic vegetation scheme. The completion of this crucial initial stage 

has resulted in the identification of the most suitable vegetation and land-cover configurations for 

integration into fully coupled seasonal and decadal forecast systems.  

2.2 Scope of this deliverable 

2.2.1 Objectives of this deliverable 

The objective of this document is to provide an evaluation of the impact of these datasets and 

parameterization on different aspects of seasonal and decadal predictions, and ultimately to 

formulate recommendations and pathways for their incorporation into the next generation of the C3S 

seasonal forecast systems to enhance their skill further. 

2.2.2 Work performed in this deliverable 

A number of seasonal and decadal reforecast experiments have been performed with 3 different 

prediction systems, using either fixed or time varying vegetation and land cover maps. The results are 

assessed through a range of evaluation criteria. The temperature prediction skill is measured across 

the full time period and with a focus on the two extreme summers of 2003 and 2010 over western 

Eurasia. The impact on temperature trends in summer and winter is also presented and discussed. 

Another section is dedicated to the potential predictability of vegetation anomalies  based on a model 

using prognostic scheme for the leaf area index. The main conclusions of this evaluation are drawn in 

the final section, along with recommendations regarding  the inclusion of time varying vegetation and 

land cover in forthcoming seasonal forecast systems. 

2.2.3 Deviations and counter measures 

None 
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3 DATA AND METHODS 

3.1 Experiments and data 

The numerical experiments evaluated in this deliverable consist of a set of 4-month seasonal 

hindcasts, with an ensemble size of 50 to 101 members, as well as 10-year decadal hindcasts, with 10 

ensemble members. The hindcast have been initialized  on May 1st and/or November 1st ( See details 

in Table 1). 

In all the “Perfect LAI” simulations, the prescribed LAI is derived from the CONFESS homogenized time 

series, described in Deliverable D1.1 

Some of the experiments carried out by CNR (see details in Table 1) benefit from an improved effective 

vegetation cover parameterization in the HTESSEL land surface model, described in the CONFESS 

Deliverable D1.2. This development used satellite data on the fraction of green vegetation cover 

(FCover) from CGLS to formulate and integrate a spatially and temporally varying effective vegetation 

cover parameterization defined as an exponential function of LAI (Van Oorschot et al., 2023). 

Partner Exp ID Hindcast 

period 
initial 

date 
lead-

time 
(M 

months 

or N 

years for 

decadal) 

Ensemble 

size 
Spatial 

resol 
LAI config Land-Cover 

config 
Other 

(Effective 

vegetation cover 

parameterization) 

MF MF-Eco 1993-2016 May 1st 4 months 50 Atm: 1.5° 

Oce: 1° 
Climatology 

(Ecoclimap) 
fixed  

MF MF-Cntrl 1993-2016 May 1st 
Nov 1st 

4 months 50 Atm: 1.5° 

Oce: 1° 
Climatology 

(CONFESS) 
fixed  

MF MF-Perf 1993-2016 May 1st 4 months 50 Atm: 1.5° 

Oce: 1° 
Perfect 
(Prescribed) 

fixed  

MF MF-Int 1993-2016 May 1st 
Nov 1st 

4 months 50 Atm: 1.5° 

Oce: 1° 
Interactive 

(prognostic) 
fixed  

MF MF-Luc 1993-2016 May 1st 4 months 50 Atm: 1.5° 

Oce: 1° 
Interactive 

(prognostic) 
Prescribed 

annually varying 

 
 

 

ECMWF CONTROL 1993-2019 May 1st 
Nov 1st 

4 months 101 Atm: 0.5° 

Oce:1° 
Climatology 

(CONFESS) 
fixed  



CONFESS 2020 

 
 

D3.3 Evaluation of impact of variable land cover and vegetation on seasonal  and near-term predictions. 10 
 

ECMWF LAI+LULC 1993-2019 May 1st 
Nov 1st 

 
 
 

4 months 101 Atm: 0.5° 

Oce:1° 

 
 

Perfect 
(Prescribed) 

Prescribed 

annually varying 
 

ECMWF LULC 1993-2019 May 1st 
Nov 1st 

4 months 101 Atm: 0.5° 

Oce:1° 
Climatology 

(CONFESS) 
Prescribed 

annually varying 
 

CNR-

ISAC 
DCP-

SENS 
1993-2019 Nov 1st 5 years 10 Atm: 0.5° 

Oce: 1° 
Perfect 
(Prescribed) 

Prescribed 

annually varying 
Improved 

parameterization 

constrained 

through satellite 

C3S/CGLS 

FCOVER  

CNR-

ISAC 
DCP-

CTRL1 
1993-2019 Nov 1st 5 years 10 Atm: 0.5° 

Oce: 1° 
prescribed  from 
historical 

simulation (r1) 

with dynamical 

vegetation on. 

prescribed  from 
historical 

simulation (r1) 

with dynamical 

vegetation on. 

Effective 

vegetation cover 

not constrained 

with observations. 

Table 1 list of numerical experiments 

 

3.2 Verification data and metrics 

The ERA5 reanalysis (Hersbach et al, 2020) has been used as a reference dataset for the hindcast 

evaluations. 

The Anomaly Correlation Coefficient (ACC, Equation 1) serves as the main prediction skill metric in this 

document. The ACC measures the linear relationship between forecasted and observed anomalies, 

specifically focusing on the phase of variability. Importantly, it does not take into account the 

magnitudes of these anomalies. 

 

 

 
1 The decadal control experiment consists of decadal hindcasts previously conducted at Barcelona 
Supercomputing Center (BSC) as their tier-1 (Component A1) contribution to the Decadal Climate 
Prediction Project (Bilbao et al., 2021). 

(Equation 1) 
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4 Results 

4.1 Impact of the vegetation and land-cover configuration on the prediction skill 

4.1.1 Seasonal lead-times 

Different JJA (Fig. 1) and DJF (Fig.2) hindcasts initialized on May 1st and Nov. 1st respectively, are 

evaluated by means of ACC difference patterns with respect to a reference hindcast. Overall, ACC 

differences delineate relatively small scale features detailed as follows. 

Fig. 1 (a) and (b) show the impact of LULC and of its combination with LAI in the ECMWF forecast skill 

(correlation) for JJA. We see that LULC has limited impact on forecast kill. In comparison, LAI+LULC has 

stronger impact with marked improvements across subtropical North America, Sahel region of Africa, 

Central Asia, northern China and the Indian subcontinent. There is however, degradation in skill over 

the high latitudes including Eurasian region and Canada as well as the Amazon.  

The bottom block of Fig. 1 shows the impact of different land aspects in Meteo-France. The choice 

of  LAI climatology (CONFESS versus Ecoclimap, shown in Fig. 1c ) visibly reduces the correlation skill 

over NorthWestern USA, Central Europe and Northern Siberia, while it shows some skill improvements 

over Alaska, tip of Greenland, South of US, Argentina/Chile and Western Australia. These areas are 

also visible with the prescribed time-varying vegetation (Fig. 1d), although with some modifications. 

For instance, the area of degraded skill over Europe moves to the North. The skill is also reduced over 

Europe with either prescribed or prognostic (Fig. 1e) vegetation. The skill degradation over Siberia is 

shared by the ECMWF results.   

We note that in the MF model, the impact of LULC (measured as the difference in skill between 

experiments Mf-Luc minus MF-Int, fig. 1f) is stronger than in the ECMWF, with substantial, albeit 

localized, increase of ACC. The limited LULC sensitivity for ECMWF may be at least in part related to 

the vegetation discretization of HTESSEL that aggregates vegetation in only two tiles (high and low 

vegetation) for the computation of fluxes with the atmosphere in each grid point. In fact, differently 

from MF that allows coexistence of all plant functional types (PFTs), ECMWF allows only the dominant 

PFT for the low and the high vegetation tiles to characterise the respective biophysical parameters in 

each grid point (See Deliverable 1.2 for more details). 
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Figure 1: Anomaly Correlation Coefficient (ACC) for June-to-August  seasonal mean 2m temperature in the 
ECMWF (top block, panels a,b) and Meteo-France (bottom block,panels c-f): (a) LAI+LULC  and (b) LULC  plotted 
as difference against the CONTROL experiment, in (c ) MF-Cntrl (d) MF-Perf (e) MF-Int difference  against MF-Eco 
and in (f) MF-Luc difference against MF-Int. Hashed areas are significant at 90% based on a Student’s T-test.  

 

 
 

Figure 2:  (a) and (b) Same as Fig. 1 (a) and Fig. 1 (b) but for December-to-February. (c) Mf-Int difference against 
MF-Eco for December-to-February 

Fig. 2 shows the impact on skill for DJF.  We see again that the LULC in the ECMWF system has little 

impact on skill (Fig. 2b). The time-varying LAI has a larger impact (Fig. 2a). It degrades the skill over 

Europe and Western USA, and shows some small and localized improvements over East Africa and 

South Brazil. In contrast, the prognostic LAI in the Meteo-France model (Fig. 2c) in DJF improves skill 

over Iberian Peninsula and Northern Africa, as well as large areas over the central US and along the 

Northern flank of the Himalayas. 

c)

) 

b)

) 

a)

) 

b) 

a) 

d) 

c) e) 

f) 



CONFESS 2020 

 
 

D3.3 Evaluation of impact of variable land cover and vegetation on seasonal  and near-term predictions. 13 
 

In summary, we can conclude that time-varying LULC has little impact on the forecast skill of T2m, 

while time-varying LAI has visible impact on seasonal forecasts of T2m, affecting large areas. However, 

there is a large dispersion between models regarding the area of influence and the sign of the impact: 

in the ECMWF model the impact is largely negative, while in the Meteo-France model the impact is 

beneficial. Therefore, more research work is needed before using the new CONFESS datasets on 

operational reanalyses or seasonal forecasts. Another aspect to bear in mind is that at seasonal time 

scales the solution is likely to be dependent on the initial conditions, which in this work were produced 

without data assimilation. 

4.1.2 Case studies: summers of 2003 and 2010 

All the simulations show a relatively poor skill for t2m (not shown), which is not surprising given the 

weak summer temperature predictability over Europe (Patterson et al. 2022). 

However, since the vegetation growth is highly sensitive to heat and drought stress, we wanted to 

assess the impact of the vegetation in the prediction of extreme summers such as 2003 for western 

Europe and 2010 for western Russia. 

 

 

 
 

 
 

 

 
 

Figure 3. June-to-August 2003 seasonal mean 2m temperature over Europe: (a) ERA5 anomaly, (b) difference 
between LAI+LULC and CONTROL experiments,  (c)  MF-Perf and MF-Eco, (d) MF-Int and MF-Eco.  (e) to (g) Leaf 
Area Index anomaly in LAI+LULC, MF-Perf and MF-Int, respectively. 

e) 

b)

) 

a)

) 

f) 

c)

) 

g)

) 

d)

) 
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Figure 4. Same as Figure 3 but for 2010 over Russia 

 

Time-varying vegetation improves the seasonal forecasts of heat extremes in both the ECMWF and 

MF models, when the LAI is prescribed (Fig. 3b,c and 4b,c). The region of maximum impact is 

collocated with  those with negative LAI anomalies during both the European heat wave in 2003 (Fig. 

3a) and the Russian heatwave in 2010 (Fig. 4a), although the temperature anomalies tend to have an 

excessive spatial spread in the Météo France model with prescribed time varying vegetation. 

MF-Int succeeds in forecasting negative LAI anomalies in June-July-August for both case studies (Fig. 

3g and 4g), with a slightly too strong amplitude in 2003 and too reduced in 2010. However, in 2003, 

the negative LAI anomaly pattern is located too far to the east. This could be one of the reasons why 

the temperature forecast fails in this experiment . In the 2010 case, despite an overall successful LAI 

forecast, the predicted  temperature anomaly is not substantially better. For both case studies, we 

hypothesize that in the simulation using a prognostic vegetation scheme, the LAI suffer from initial 

conditions and time evolution different from observation, which might result in inadequate land-

atmosphere feedbacks, and ultimately a loss of temperature forecast skill. Verifying this assertion 

would require further investigation. 

4.1.3 Decadal lead-times 

4.1.3.1 Improved representation of vegetation/land cover variability 

 

The differences in the vegetation representation between the DCP-CTRL and DCP-SENS are evaluated 

by comparing the interannual variation of the annual-mean leaf area index (LAI) and the trends in 

annual-mean low and high vegetation covers. In the DCP-CTRL, the vegetation originates from an 

historical simulation of EC-Earth3 (EC-Earth3, historical, r1i1p1f1) that simulated vegetation dynamics 

(LPJ Guess; Smith et al., 2014), while in the DCP-SENS, the vegetation is prescribed using the new 

observational data from CONFESS (Deliverable D1.1) and also implementing the improved effective 

cover parameterization in CONFESS (Deliverable D1.2). 

e) 

b)

) 

a)

)0 

c)

) 

f) g)

) 

d)

) 

https://esd.copernicus.org/articles/12/173/2021/#bib1.bibx77
https://esd.copernicus.org/articles/12/173/2021/#bib1.bibx77
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Figure 5 and Figure 6 show the interannual standard deviation for the high vegetation LAI and the low 

vegetation LAI, respectively. In figure 5, the high vegetation LAI reveals a discrepancy between the 

values simulated by LPJ Guess and the observed data that are prescribed in DCP-SENS. DCP-SENS 

exhibits the largest interannual variability in Euro-Asiatic boreal forests and North American 

subtropical humid and temperate forests (Fig. 5b). The North American boreal forest shows a relatively 

weaker interannual variability compared to other Northern hemisphere forests. Tropical forests in 

South America, Africa and Southeast Asia have low interannual variability, with typical values between 

0.25 and 0.5.  

The DCP-CTRL high vegetation LAI tends to underestimate the interannual standard deviation across 

various regions. The most significant differences from observations are found in the Northern 

Hemisphere, where the DCP-CTRL experiment struggles to capture the variability in North America 

and Eurasia (Figure 5a and 5c). DCP-CTRL also shows an unrealistically large interannual variability of 

the high vegetation over deserts (Fig. 5a). Despite this peculiar behaviour in the dynamical vegetation 

module, it does not impact the model, as the land cover is expected to prevent any effects resulting 

from this anomalous vegetation. 

 

Figure 5: Interannual standard deviation of high vegetation leaf area index (m^2/m^2). a) DCP-CTRL, b) DCP-
SENS, c) DCP-SENS minus DCP-CTRL.  Dots represent not statistically significant values, α=0.05. 

Figure 6 shows the interannual standard deviation for the low vegetation LAI. In contrast to the high 

vegetation case, the DCP-CTRL experiment (Figure 6a) exhibits a consistently higher interannual 

standard deviation of LAI compared to the observed data as prescribed in DCP-SENS. Differently from 

DPC-CTRL, the LAI variability of the low vegetation in DCP-SENS tends to be concentrated over regions 

where the low and high vegetation coexist. The largest difference between DCP-CTRL and DCP-SENS 

is evident in the Amazon forests, where DCP-CTRL exhibits an unrealistically high variability. 
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Figure 6: Same as Figure 5 but for the low vegetation leaf area index. 

The trends of annual-mean effective vegetation cover are illustrated in Figures 7and 8 for high and 

low vegetation, respectively. 

In figure 7a, the DCP-CTRL high vegetation effective cover trend is largely positive in Europe, the Euro-

Asiatic boreal forests, and the northern limit of the North American boreal forest. Another 

considerable positive trend characterises the east-equatorial Amazon basin. On the other hand, 

negative trends characterise DCP-CTRL in the Southern Hemisphere, with larger values in Brazil and 

Argentina. Southeast Asia also exhibits a negative bias, while the signal in Africa is mixed. 

Panel b displays the trend of the DCP-SENS experiment, which is positive in North America and Europe. 

A strong negative trend is observed in the Brazilian Amazon, confirming the deforestation process in 

that region.  

The difference between the two experiments, as shown in panel c, indicates an excessive positive 

trend in the DCP-CTRL over Northern Hemisphere boreal and temperate forests. DCP-CTRL also 

overestimates vegetation trends compared to DCP-SENS over east-equatorial Amazon forest, while in 

the rest of South America the negative trends in DCP-CTRL are too large. In Africa, Southern Asia, 

Indonesia and Oceania the differences between DPC-CTRL and DPC-SENS tend to be mixed. 
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Figure 7: Effective high vegetation cover trend (%/10y). a) DCP-CTRL. b) DCP-VEG. c) DCP-SENS minus DCP-CTRL. 

Figure 8 illustrates the trend in low vegetation (%/10y) displaying a considerable positive trend in low 

vegetation for both DCP-CTRL (panel a) and DCP-SENS (panel b) in large areas. DCP-CTRL (Fig 8a) shows 

a general positive trend across Euro-Asia, the Sahel, and North America. In Australia, there is a notable 

reduction in low vegetation in its eastern half, counterbalanced by an increase in the west. South 

America exhibits mixed trends with a significant increase in low vegetation over the Pampas region 

and a decrease in some parts of eastern Brazil and the extreme South of the continent. Conversely, 

the DCP-SENS experiment, and by design the observational data, shows a different pattern  (Fig 8b 

and Fig 8c). While an overall positive trend in low vegetation is observed, this effect is localised to 

specific regions: Europe, Russia, United States and the Brazilian Amazon forests. 

 

 

 

Figure 8: Same as Figure 7 but for the effective low vegetation cover. 
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4.1.3.2 Improved vegetation/land cover effects on Model bias 

Figure 9 illustrates the global mean bias of the two-metre temperature as a function of the lead year. 

In panel a), the bias is calculated using all the grid points (land and sea). The DCP-SENS experiment 

(orange line) exhibits a consistently lower bias at every lead time, when compared to the DCP-CTRL 

experiment resulting in a global bias improvement of approximately 0.1K. As the simulation 

progresses, the model bias increases. For the DCP-CTRL experiment the two-metre temperature global 

average bias ranges from -0.6K at lead year 0 to -0.9K at lead year 4. Similarly, the bias for the DCP-

SENS experiment shifts from -0.5K to -0.8K. To discern whether the bias reduction is attributed to land 

or ocean, Figure 9 panels b and c show the global bias calculated using land-only and sea-only grid 

points, respectively.  The DCP-SENS experiment demonstrates a general improvement in bias 

compared to the DCP-CTRL experiment, with the most significant improvement occurring over land 

(Fig 9b), where the bias reduces by approximately 0.2K at each lead year. The differences over the 

ocean points are smaller, as expected since the differences between the two setups are in the land 

surface. Still, it is interesting to note that the properties of the vegetation over land in DCP-SENS 

appear to reduce slightly the biases over the ocean, as it is later shown in the bias maps (Fig. 10) 

  

 

Figure 9: 2m temperature global average bias in function of the lead time. a) All the grid points, b) global average 
on land, and c) global average on ocean. The DCP-CTRL experiment is in blue and the DCP-SENS experiment is in 
orange. The line represents the ensemble mean values, while the shading is the ensemble spread. 

Figure 10 compares the global maps of the bias in two-metre temperature. Panel a) displays the DCP-

CTRL bias, panel b) illustrates the bias of DCP-SENS, and panel c) depicts the difference between DCP-

SENS minus DCP-CTRL. Panels a) and b) demonstrate that the EC-Earth model generally exhibits a 

negative bias in two-metre temperature when compared with ERA5. In the Boreal hemisphere, larger 

cold bias values are observed over Sahara and boreal forests. Positive values are limited to three small 

regions: east of the Caspian Sea, and the east coasts of North America and Asia. The latter two regions 

are characterised by intense baroclinicity and are where the storm tracks originate. The southern 

hemisphere exhibits a different behaviour with the bias over the continents remaining negative, while 

it becomes mostly positive over the Southern Oceans, particularly at latitudes greater than 40S. The 

difference between the two experiments, as shown in Panel c), indicates an overall improvement in 

bias, particularly over Siberia, Europe, Greenland, and tropical forests (South America, Africa, and 

Southeast Asia). However, North American boreal forests and arid regions such as Sahara display an 

increase in the cold bias for DCP-SENS. The Northern Hemisphere Oceans also show a bias 

improvement over North Atlantic, Labrador Sea, Hudson Bay, North Pacific Ocean, and Bering Sea with 

a small (0.1K - 0.5K) but statistically significant reduction of the temperature bias. These 

improvements are localised in a latitudinal band between 40N and 80N. 
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Figure 10: 2m temperature bias versus ERA5. a) DCP-CTRL bias. b) DCP-SENS bias. c) Bias difference, DCP-SENS 
minus DCP-CTRL. Dots represent statistically significant values, α=0.05. 

4.1.3.3 Improved vegetation/land cover effects on Skill 

Figure 11 shows the impact of the improved vegetation representation on the prediction skill, 

measured in terms of the Anomaly correlation coefficient (ACC), for annual-mean 2m Temperature at 

3-year lead time, valid for the 4-5 year forecast period. The forecast start dates, in these figures, are 

limited from 1999 to 2019. The reduced sample of start dates is used to evaluate whether there is an 

effect due to the unrealistic LAI jump found for the tropical regions when moving from 1998 to 1999 

(see deliverable D1.2). Figure 11a displays the ACC for DCP-CTRL, while Fig. 11b presents the ACC for 

DCP-SENS.  The prediction skill of the model exhibits strong regional variation; some regions have high 

ACC values, while others have almost no skill. Over the continents, the prediction skill is limited but 

some regions display relatively good skill including the high latitudes (above 60N) in the boreal 

hemisphere (excluding Greenland and Canada), Central Europe, the Southwest of the United States, 

and North Africa. In contrast, the prediction skill of the model is low in Central Asia, North America 

(between 40N and 60N), and Greenland; these are regions where ACC values are near zero or negative. 

Focusing on the oceans, the Mediterranean, Indian Ocean, and Western Pacific Ocean (in the summer 

Intertropical Convergence Zone) are the basins with the highest ACC values. Conversely, the North 

Atlantic shows relatively low prediction skill.  

When comparing the DCP-SENS and DCP-CTRL experiments (as shown in Figure 11, Panel c), it is shown 

that the ACC improvement is confined in a few regions with the most substantial signal concentrated 

in Central Asia boreal forest. Another strong signal is over the Bering Sea, and a third ACC 

improvement over the deciduous forests in the Southeast of the United States. The ACC improvement 

in Central Asia is in a region where the DCP-CTRL experiment has almost no skill and can be related to 

interannual variability in land cover introduced with the model's improved vegetation (figures 5 and 

6). On the other hand, the skill improvement over the Bering Sea cannot be associated with changes 

in land cover but is most likely related to remote effects due to changes in nearby land masses. 
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Figure 11: 2 m temperature annual mean ACC versus ERA5, at 3-year lead time, valid for the 4-5 year forecast 
period. a) DCP-CTRL ACC, b) DCP-SENS ACC, c) ACC difference, DCP-SENS minus DCP-CTRL. Dots represent 
statistically significant values, α=0.05. 

Figure 12 shows the DCP-SENS minus DCP-CTRL ACC difference for the boreal winter season 

(December-January-February; DJF) at 3-year lead time, valid for the 4-5 year forecast period, for three 

different variables in polar stereographic projection: a) 2m temperature, b) mean sea level pressure 

(MSLP), and c) the zonal wind at 850 hPa. The polar stereographic projection is best suited to highlight 

the large-scale features of the Northern Hemisphere, i.e., where the improved vegetation has more 

significant effects. The difference in ACC for MSLP and U850 is visible over the region in Central Asia, 

where 2m temperature improves the most, but is also visible over a wide area to the West, including 

Europe and reaching the North Atlantic Ocean and Greenland. In North America, DCP-SENS shows a 

prediction skill improvement over Alaska, with a statistically significant reduction of the ACC values 

near the Hudson Bay. 

 

 

 

Figure 12: December-to-February season, ACC difference, DCP-SENS minus DCP-CTRL for 2 m temperature (a), 
mean sea level pressure (b) and zonal wind at 850 hPa (c). Dots represent statistically significant values, α=0.05. 
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4.2 Impact on the trends of screen-level temperature 

4.2.1 Seasonal hindcasts 

4.2.1.1 ECMWF 

The impact of time varying vegetation in JJA in the ECMWF model is to dampen the observed warming 

trend (Fig. 13a) over most of the northern Hemisphere (Fig. 13b). It therefore worsens the trend errors 

(Fig. 13b) in most places including Europe and northern high latitudes. Land cover changes induce a 

significant reduction in errors over Central Eurasia (Fig 13d).   

In boreal winter DJF, time varying vegetation leads to degradation in trends across most of the regions 

where changes are significant (South America, Greenland, sub-Saharan Africa, eastern Europe and 

Siberia) (Fig 14c). 

 

 

 
Figure 13: Trend in June-to-August seasonal mean 2m temperature during 1993-2019 in (a) ERA5 and 
differences against the CONTROL in the  (c) LAI+LULC and (d) LULC experiments. 

 



CONFESS 2020 

 
 

D3.3 Evaluation of impact of variable land cover and vegetation on seasonal  and near-term predictions. 22 
 

 
Figure 14: Same as Fig. 13 but for December-to-February. 

 

4.2.1.2 Meteo France 

 

The MF model captures relatively well the JJA linear trend of ERA5 (Fig 15a), and the difference 

patterns associated with the vegetation setup have a relatively low amplitude (Fig 15b). In more 

details, prognostic vegetation tends to reduce the positive trend errors over Canada, but to increase 

them over the Eastern USA. Overestimation of warming trends is reduced with prognostic vegetation 

in other areas, such as eastern Australia, North-West and southern Africa. However there are regions 

where prognostic vegetation increases the warming trends (western Europe, Central Siberian, Central 

Africa) and in these regions the trend errors get worse. 

 
Figure 15: Trend in June-to-August seasonal mean 2m temperature during 1993-2015 as difference between 
(a) MF-Eco and ERA5 and (b) MF-Int and MF-Eco. 
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Figure 16 (top panels) compares the impact of prescribed time-varying vegetation, this time by 

comparing with MF-Ctrl (which uses the CONFESS climatology) rather than MF-Eco. The comparison 

is for seasonal forecasts of JJA initialized in May. Overall, the time-varying prescribed vegetation 

reduces the warming trend over most of the world. Notable exceptions are the surroundings of the 

Black and Caspian Sea (consistent with better representation of  heat extremes in previous sections), 

Northern Africa (Mediterranean coast) and South Africa).  

The prognostic vegetation (Fig 16c) does not show such an overall cooling impact w.r.t to MF-Cntrl. In 

fact, although the differences between Fig 15b and Fig 16c are sizable,  they are only due to the 

reference LAI climatology (Ecoclimap and CONFESS respectively).   

Finally, the impact of LULC in the Meteo-France model (Fig 16d) shows that time variations of this field 

also have a marked and large scale impact on T2m trends, and can add/damp the impact of prognostic 

vegetation. 

In summary, just the choice of vegetation climatology or land use boundary conditions have 

substantial impact on the solution. These findings further illustrate the urgent need to pay attention 

to better representation of land processes in the models used for weather and climate prediction. 

 
Figure 16: Same as MF but for differences (a) MF-Ctrl minus ERA5 (b) MF-Perf minus MF-Ctrl (c) MF-Int minus 
MF-Ctrl and (d) MF-Luc 

As an illustration, Fig. 17 shows the LAI trend in MF-Perf (corresponding to the CONFESS LAI dataset) 

and in MF-Int for JJA 1993-2015. These trends are notably different, with MF-Perf exhibiting 

substantially higher trends over large areas of the globe, while MF-Int shows a mix of positive and 

negative trends with a weaker amplitude in general, with the exception of equatorial Africa. It is 

interesting to notice that many regions concerned by a negative LAI trend in MF-Int, (Central Africa, 

South east North America, eastern China) also show a positive anomaly of the  temperature trend with 

respect to MF-Eco (trendless climatological LAI), and conversely (southern Africa, eastern Australia, 

eastern Siberia and northern Canada). The remarkable impact of LAI trend on temperature trend is 
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further confirmed by MF-Perf simulation, in which most  the cooling hotspots correspond to a strongly 

positive LAI trend (northern Europe, North America, Amazon, China, eastern Siberia). 

 

 
Figure 17: JJA 1993-2015 LAI trend in (top) MF-Perf and (bottom) MF-Int 

Conversely to JJA,  the model trend depicts a marked positive bias over central North America, as well 

as Siberia in DJF (Fig. 18a). The difference between interactive and climatological vegetation  indicates 

an even stronger bias over central Canada and western Siberia (Fig 18b). However, in DJF prognostic 

vegetation reduces the negative trend errors over Western Canada and Alaska (~30%) and the positive 

trend errors over the USA (~10-20%). There is little impact over Europe. 

 
Figure 18: Same as Figure 15 but for December-to-February. 

 

A misrepresentation of canopy-snow processes (Wang et al. 2016) and inaccurate snowpack 

initialization are likely involved in this discrepancy, and underlines the need to pursue investigation 

and increase the focus in this respect.  
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The impact on trends is generally larger scale than the impact on correlation skill. The impact is 

sizeable. To reiterate: vegetation has visible impact on trends, and grants further research, although 

it is not yet ready for operational implementation 

 

 

 

 

4.2.2 Decadal hindcast trends 

 
Figure 19: Trend in December-to-February, lead 3, two years mean, 2m temperature during 1993-2019 as 
difference between (a) DCP-CTRL and ERA5 and (b) DCP-SENS and DCP-CTRL. Stippling represents statistically 
significant values, α=0.05. 

 

 

 
Figure 20: Trend in June-to-August, lead 3, two years mean, 2m temperature during 1993-2019 as difference 
between (a) DCP-CTRL and ERA5 and (b)  DCP-SENS and DCP-CTRL. Stippling represents statistically significant 
values, α=0.05. 

 

 

For the winter season (DJF, fig. 19), we find that the DCP-CTRL experiment tends to overestimate the 

temperature trends in the boreal hemisphere and Brazil. Conversely, the trend is underestimated in 

Africa, India and Argentina. 



CONFESS 2020 

 
 

D3.3 Evaluation of impact of variable land cover and vegetation on seasonal  and near-term predictions. 26 
 

The introduction of realistic vegetation (DCP-SENS) improves the trend in several regions globally. The 

most significant improvements are observed in Quebec, Central Europe, Scandinavia, Alaska and the 

Far East of Russia. These improvements could be attributed to a better representation of the model 

albedo due to changes in snow cover and vegetation cover. However, Greenland exhibits a different 

behaviour and the trend degradetes. Outside of the boreal hemisphere, the DCP-SENS trend improves 

in Brazil but  deteriorates in Africa and Australia. 

For the summer season (JJA, fig. 20), similarly to DJF, the DCP-CTRL trend in JJA generally shows an 

overestimation. The regions with the largest trend bias are Alaska, Scandinavia and Siberia. North 

America, Central Europe/Middle East, China, Sahara and Brazil.  Regions where the trend is 

underestimated include India and Southern Africa. 

The comparison between DCP-SENS and DCP-CTRL shows a general improvement of the trends. 

Scandinavia, North America and Eurasia exhibit a significant improvement in the overestimated trend. 

Similarly, the temperature trend improves in Brazil, India and southern Africa. 

The trend does not improve in a few regions, such as the Northern boundaries of the North American 

continent and the Sahel. 

4.2.3 Impact of verification period on trends in ECMWF seasonal hindcasts 

The temporal records of LAI presented a discontinuity in the tropics around 1999 (CONFESS 

Deliverable 1.1) which could contaminate the results presented above. In this section we repeat the 

diagnostics on trends for the period 2000-2019 with the ECMWF system. A shorter period means less 

significance of the trends, but also, since this period is more recent, we can expect stronger warming 

in ERA5.  

Fig 21c and 22c show the impact of LAI and LULC on trends during this shorter period. The overall 

cooling impact of LAI during the longer record (Fig 13c/14c) is not so pronounced during 2000-2019, 

and it is hardly visible in South America or Africa. The absence of this cooling impact over these areas 

occurs in both JJA (Fig 21) and DJF (Fig 22). Therefore, we conclude that the strong cooling effect over 

these regions using the period 1993-2019 can be attributed to the discontinuity in the LAI record 

around 1999, which was larger in the tropical forests.  

Fig 21d and 22d show that the impact of LULC is large and has different patterns for winter and 

summer. In JJA (Fig 21d), the time varying LULC  impact manifests as a large scale structure over 

Eurasia, characterized by cooling over Western Europe and Eastern Asia, and a warming over 

Scandinavia Central Eurasia and around the Black Sea. There is also warming over North America. In 

DJF, the LULC (Fig 22d) produces an ever stronger large warming scale pattern over North America, 

but winter cooling over most of Eurasia.  

The impact of time varying LAI seems to have a strong seasonal dependence, which mostly goes in the 

direction of damping the magnitude of the trends. Thus, in the summer hemisphere (JJA Fig 21c for 

NH and  DJF, Fig 22c for SH), LAI induces a cooling trend in the high latitudes, which can dominate and 

reverse the signal induced by LULC. In the winter (DJF Fig 22 for NH and JJA, Fig 21 for SH), the time 

varying vegetation seems to also damp the cooling trends over Eurasia induced by the time-

varying  LULC. But there are notable exceptions to this damping effect: time-varying LAI enhances the 

warming trend in JJA over a vast area of Russia, and in DJF enhances the warming trends over Africa 

and Indian subcontinent.  
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Figure 21:  Same as Figure 13, but for the period 2000-2019. 

 

 
Figure 22:  Same as Figure 14, but for the period 2000-2019. 
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4.3 LAI prediction: a proof of concept 

Beyond the impact on climate trends and atmospheric seasonal predictability, the simulation with an 

interactive vegetation scheme allows us to assess the seasonal predictability of the LAI itself. 

Predicting the LAI at the subseasonal and seasonal time horizon could help anticipate anomalies 

of  gross primary production (GPP), and may foster novel climate services dedicated to agriculture and 

forest management. 

Such a predictability assessment requires some benchmarking with a reference forecast system. Here, 

the reference is a persistence forecast, that consists in persisting the anomaly of LAI initial conditions 

across the seasonal cycle of a climatological LAI (eq. 2) 

 

 

Where y is the considered hindcast year, and the overbar indicates the mean value across the full 

hindcast period. 

The land component of MF-Int is initialised from the corresponding land offline simulation named MF-

ila in Deliverable D1.2. 

When the persistence forecast LAIpersist is derived from actual LAI observation (namely the CONFESS 

homogeneized dataset, see deliverable D1.1), the LAI prediction skill exceeds MF-Int with very local 

exceptions (not shown).  This relates to the fact that LAI initial anomalies may differ substantially 

between observation and MF-ila (cf. the analysis of the LAI bias if MF-ila, fig. 2 and 3 of Deliverable 

D1.2). 

We have thus analysed the potential LAI predictability within a perfect model framework. In this case, 

the LAI time series derived from MF-ila is used as a synthetic truth. The ACC analysis (fig. 23d) reveals 

that the prognostic LAI beats the persistence across many regions at the seasonal lead time (boreal 

summer), with 2 noticeable exceptions over Northern Europe and Eastern US. Interestingly, the latter 

region matches very well a region dominated by C4 crop cover (See fig. 2 in Decharme et al., 2019). 

The sowing time of these crops, and maize in particular, revolves around late April or early May in the 

US. Consequently, the LAI anomaly taken on May 1st for C4-crop vegetation type may be little relevant 

to construct a persistence forecast. This hypothesis would deserve further investigation exceeding the 

scope of this project. 

At a shorter lead time, the MF-Int is more skillful than the persistence across high latitudes only (fig. 

23a and b). Over there, the vegetation is barely emerging from its winter dormancy on May 1st, which 

questions the relevance of persisting the LAI anomaly in these regions.. 

(Equation 2) 
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 ACC (MF-Int) ACC difference wrt persistence forecast 

May 

 

(a) (b) 

JJA 

 

 (c) (d) 

Figure 23: (a) May LAI anomaly correlation for MF-Int (b) Difference of anomaly correlation between MF-Int and 
a Persistent forecast. (c) and (d) like (a) and (b) for the June-July-August quarter 
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5 Conclusion and recommendations 

The multi-model comparison anomaly correlation, linear trends and case studies in seasonal 

integrations conducted with time-varying LULC and LAI (either prescribed or prognostic),  initialized in 

May and November, leads to the following conclusions: 

• The temporal variations of LULC have little impact on forecast skill, but sizable impact (~10-

20%) on the representation of trends, visible already at 3-months into the forecast, with 

strong seasonality. 

• Time varying vegetation (both prognostic and prescribed) has a larger impact on seasonal 

forecast skill of T2m, but the impact is not robust across systems, varying largely on location 

and sign. There are also an indication that the choice of LAI climatology has  a sizeable impact 

on forecast skill of T2m.   

• There are indications that the discontinuity in the records of LAI around 1999 contaminate the 

representation of the linear trends in seasonal forecasts over the tropical areas.  

• After 2000, the impact of time-varying LAI on seasonal forecasts of T2m trends is non 

negligible and commensurable with the impact of LULC. In several regions (especially high-low 

latitudes) it tends to compensate for the effect of time-varying LULC, reducing the cooling 

trends in the winter hemisphere and the warming trends in the summer hemisphere. But 

there are notable exceptions, such as the enhanced warming over large areas of Eurasia in JJA 

and over tropical Africa and Indian Subcontient.  

• Time varying vegetation appears to increase the amplitude of heat extremes in specific cases, 

such as the heat waves of 2003 over France and 2010 over Russia. 

The analysis of decadal integrations shows that the inclusion of an improved parameterization of the 

vegetation cover leads to considerably reduced temperature biases over continents. In terms of 

prediction skill, improvements are marginal when considering annual anomalies. However, for the 

boreal winter, the prediction skill is enhanced  at the  3-year lead time, and this seems related to an 

improved atmospheric circulation. This suggests that the choice of vegetation boundary conditions in 

the models is crucial for both local land-atmosphere feedbacks and remote impacts associated with 

changes in circulation patterns.  

Recommendations: 

• More work is needed to understand the  impact of temporal variations of  LAI and LULC on 

seasonal forecasts, to reduce the uncertainty between models, and to evaluate the sensitivity 

to the initial conditions.  

• Therefore, it is considered that the CONFESS developments are not ready yet for operational 

implementation in reanalyses and seasonal forecasts.  
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• There is a pressing need  to quantify and verify the vegetation/atmospheric feedbacks in 

models at different time scales. This includes local thermodynamic effects and the possibility 

of vegetation and land use/cover to affect the atmospheric circulation. 

• There is a strong need to improve the modelling of the time-varying properties in the models 

used for reanalysis and seamless forecasts from days to decades ahead.  

• Improvements in the land/vegetation models are likely to feedback into the ability of data-

assimilation methods to combine observational and model information, which will lead to 

better monitoring and initialization of seasonal forecasts. These improvements will in turn 

feedback in better abilities to verify forecasts and diagnose model errors 
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