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1 Executive Summary

Vegetation plays a crucial role in the land surface water and energy balance at the global scale. The

availability of good quality Earth observation products covering recent decades together with

state-of-the-art modelling capacity provide the unique opportunity to better represent the

vegetation and its time evolution in land surface models; and ultimately in coupled models used in

climate forecast systems. In the framework of CONFESS, homogeneized high resolution observational

datasets of Leaf Area Index (LAI) and Land Cover (LC) have been used to perform and evaluate land

surface simulations over the period 1993-2019 with different set-up of vegetation configurations, but

a common atmospheric forcing derived from the ERA5 reanalysis. The present document completes

the assessment of these simulations provided in the previous deliverable D1.2. , separately for each

partner as well as jointly (multi-model approach).

This deliverable takes stock of the full set of simulations to identify the more suitable vegetation

configuration to be adopted for seasonal or decadal experiments, as proof of concept of future

systems. The main lessons learnt and implications of operational implementation of these

developments are provided in the conclusions, which can be summarized as follows:

1) Improvement and careful tuning of land models is needed in order to take advantage of the

improved observational datasets. The new observational datasets will help the model development.

2) Temporal variations in LAI have stronger impact on the interannual variations of latent heat and

soil moisture than the temporal variations in LC/LU. Because of this, it is expected that in the future,

inclusion of prognostic vegetation models will contribute to the skill improvement of seasonal

forecasts.

3) The LC/LU datasets from CMIP largely differ from those from ESA-CCI. There is a need for a joint

effort towards consistent data sets that can be used for climate simulations, reanalyses and initialized

predictions.
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2 Introduction

2.1 Background

Vegetation variability at seasonal and inter-annual time scales strongly controls water and energy

balances of the land surface. However, state-of-the-art land surface models (LSMs) included in

short-term climate prediction systems (e.g. MeteoFrance and ECMWF SEAS5) do not account for

sufficiently realistic land cover (LC) and vegetation boundary conditions and do not include

parameterizations able to interactively model seasonal to inter-annual variations in vegetation

density. Specifically, LC does not change inter-annually in these LSMs, while it is well known to have

been changing due to, for example, deforestation or vegetation shifts. Similarly, while the

climatological seasonal variations in vegetation density (of which Leaf Area Index, LAI, is a proxy) are

described in these LSMs, the inter-annual variations of LAI due, for example, to droughts are not

represented. Realistic representations of inter-annual variations in LC and LAI are fundamental to

adequately model the signal due to variations in land surface-atmosphere interactions. New

observations and latest-generation vegetation data are therefore of paramount importance to

properly constrain LSMs used for offline analysis/initialization and for seasonal-to-decadal

predictions done with fully coupled climate models.

2.2 Scope of this deliverable

2.3 Objectives of this deliverable

The objective of this deliverable is to provide a comprehensive assessment of the land simulations

carried out in the framework of CONFESS WP1 with different vegetation and land-cover

configurations, and to draw conclusions about the choice of the most suitable configuration to be

used in forecast systems.

2.4 Work performed in this deliverable

The work presented here is primarily concerned with evaluations of offline sensitivity simulations,

with a realistic or climatological leaf area index, and a fixed or annually changing land cover. A wealth

of details regarding model characteristics and development, reference dataset and experimental

setups have been provided in previous deliverables, so they will be described synthetically here, with

a cross-reference to those documents if necessary.

2.5 Deviations and countermeasures

No deviations have been encountered.
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3 Data and methods

All the experiments carried out in the framework of this work package consist of offline land-only

simulations forced by hourly atmospheric fields derived from the ERA5 atmospheric reanalysis

(Hersbach et al.  2020) through the common period 1993-2019 (Table 1).

Details about reference datasets and land surface models can be found in Deliverable D1.2. For the

sake of clarity, we remind that the DOLCE v3 (Derived Optimal Linear Combination

Evapotranspiration version 3) and CLASS (Conserving Land Atmosphere Synthesis Suit) products are

used as references for latent heat flux in this document (Hobeichi et al., 2021). The references used

for soil moisture (SM) are the So.Mo. (O and Orth, 2021) and ESA-CCI SM (Dorigo et al., 2017, Gruber

et al. 2019) products.

Issues have been detected in the Météo France Ctr experiment used to produce figures 36 and 37 of

Deliverable D1.2. The simulation has been re-run after fixing the issue and the model output files

shared among partners (see multi-model analysis in section 4.4 of the present report).

D1.3 Suitable vegetation modelling configuration 5
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Table 1. Details of experimental setup for CNR, MF and ECMWF models.

Institute Experiment Period Spatial
resolution

LAI configuration Land cover configuration Effective vegetation
cover configuration

CNR ctr-k5 1993-2019 T255 Climatological
(1993-2019)

1993 LC for 1993-2019 k=0.5

ctr-kv 1993-2019 T255 Climatological
(1993-2019)

1993 LC for 1993-2019 k vegetation specific

pla-k5 1993-2019 T255 Time varying LAI
for 1993-2019

1993 LC for 1993-2019 k=0.5

pla-kv 1993-2019 T255 Time varying LAI
for 1993-2019

1993 LC for 1993-2019 k vegetation specific

plalc-k5 1993-2019 T255 Time varying LAI
for 1993-2019

Time varying LC for
1993-2019

k=0.5

plalc-kv 1993-2019 T255 Time varying LAI
for 1993-2019

Time varying LC for
1993-2019

k vegetation specific

MF eco 1950-2020 T127 Ecoclimap LAI
climatology

2000 LC for 1950-2020

ctr 1993-2019 T127 Climatological
(1993-2019)

2000 LC for 1993-2019

pla 1982-2019 T127 Time varying LAI 2000 LC for 1950-2020

ila 1950-2020 T127 Dynamic LAI 2000 LC for 1950-2020

ila_plc 1950-2020 T127 Dynamic LAI Time varying LC for
1950-2020 (derived from
LUH2)

ECMWF ctr 1993-2019 TL639 Climatological
(1993-2019)

2019 LC for 1993-2019

plc 1993-2019 TL639 Climatological
(1993-2019)

Time varying LC for
1993-2019

pla 1993-2019 TL639 Time varying LAI
for 1993-2019

2019 LC for 1993-2019

plalc 1993-2019 TL639 Time varying LAI
for 1993-2019

Time varying LC for
1993-2019
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4 Results

In this section, the 3 partners involved provided the latest results from the sets of offline 1993-2019

land simulations with specific vegetation (LAI and land cover) configuration. The last subsection

completes the multi-model analysis started in the Deliverable D1.2.

4.1 ECMWF

For ECMWF, the data used in this project is based on the C3S/ESA-CCI LULC and the CGLS LAI. The

details of the data processing and homogenisation are shown in Deliverable D1.1.

It is shown that the time varying LULC data is spatially and temporally consistent and suitable for

future operational implementation given an appropriate choice of the cross-walking table between

the ESA-CCI PFT and the considered model PFT classification. For the time varying LAI (Figure 1) the

data is shown to be suitable for use with cautious consideration for the period prior to 1999 over the

tropical area, hence 1999-2019 was considered as a reference period.

Figure 1. Harmonised global mean CGLS GEOV2 LAI over the 1999-2020 period

When considering LULC data for a recent year (2019) and climatological LAI data based on the

1999-2019 period, the ECMWF system showed mixed positive and negative impacts on surface fluxes

and 2m temperature, pointing to the need for further adjustments of the model parameters to suit

the new data as it considerably changes the model surface status.

The impact of using time-varying LAI and LULC is evaluated by focusing on both extreme events and

long term means of surface latent heat flux and soil moisture. The detailed results corresponding to

the different experiments setup (Table 1) are shown in deliverable D1.2. In this document, the main

conclusions and recommendations for future developments are presented.

D1.3 Suitable vegetation modelling configuration 7
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For ECMWF land surface model (ECLand), both Latent heat flux and soil moisture evaluations showed

regional differences. The overall skill is, however, marked by a stronger impact when using varying

LAI compared to when using varying LULC data only (Figure 2).

Figure 2: Relative differences in mean correlation for the ECMWF model with regards to the the So.Mo (Sungmin O and R.

Orth, 2021) soil moisture data of surface soil moisture anomalies between PLC and CTR simulations (upper panel) and PLA

and CTR simulations (lower panel) over the So.Mo period (2000-2019).

D1.3 Suitable vegetation modelling configuration 8



CONFESS 2020

The above results were confirmed with the impact on extreme events, which showed more

sensitivity to the time varying LAI than the LULC. Although some of the comparisons with different

observational based products (FLUXCOM and GLEAM) were conflicting over some regions, the overall

outcome was confirmed through the multi-model comparison (section 4.4) and using advanced

observational products (CLASS and DOLCE) emphasising the positive impact in better detecting

extreme events (Figure 3) when using time-varying vegetation data (mainly LAI).

Figure 3. Latent Heat flux absolute bias difference with regards to CLASS data (W/m2) (Hobeichi et al., 2020) between time

varying LAI and LULC and control simulation for the European drought (April 2003)

These results triggered new developments within ECLand to better adapt the model parameters to

the new LULC and LAI maps and allow operational implementation of these maps as climatological

data in a first phase and time varying in a second phase. As a benefit from CONFESS, the results of

these developments for the coupled medium range forecast when using the new 2010-2019

climatological LAI and 2019 LULC shows improved atmospheric scores as depicted by the RMSE

reduction of the temperature with regards to the ECMWF system's own analysis (Figure 4). These

new results consolidate the importance of accurate and up-to-date vegetation data for better

coupled atmospheric simulations.
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Figure 4. Change in the medium range temperature RMSE with regards to own analysis when using the new 2019 LULC and

the 2010-2019 based climatological LAI data (Blue indicates a reduction in the RMSE)

4.2 CNR

The modelling results of CNR models are described in detail in D1.2. Here we provide a summary of

the most relevant findings of the different model configurations tested. Figure 5 shows the difference

in anomaly correlation of total evaporation (E) and near-surface soil moisture (SMs) between

experiments ctr-k5 and plalc-kv (table 1), with respect to DOLCEv3 evaporation and ESA-CCI soil

moisture. We found consistent improvements in correlation coefficients for both E and SMs in

semiarid regions, during the dry season. These improvements are mostly attributed to the

implementation of the inter-annually varying LAI, and inter-annually varying effective vegetation

cover (which is a function of LAI). The reduced correlation coefficients for anomaly E in the boreal

regions are partly related to a poor fit of the effective vegetation cover parameterization for high LAI

values for short grass and tundra (Figure 29 in D1.2). The improved effective vegetation cover

parameterization consistently improved the model effective vegetation cover, and regionally

improved SMs and E. The inter-annually varying land cover consistently changed the evaporation and

D1.3 Suitable vegetation modelling configuration 10
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soil moisture in regions with major land cover changes, but the effects were small. All three model

developments contribute to an improved representation of vegetation variability, but alter the model

land surface states and fluxes differently, with different limitations. Overall, the improved vegetation

variability led to improved anomaly correlations of E and SMs improved in 68% and 89% of the land

area, respectively. Considering all the results, we conclude that the most suitable vegetation

configuration is represented by the plalc-kv experiment that includes all three model developments.

Figure 5. Pearson correlation differences of anomaly evaporation (E) and near-surface soil moisture (SMs) between

experiment plalc-kv and ctr-k5 (plalc-kv – ctr-k5) with blue (red) improved (reduced correlations for the seasons DJF and JJA.

Reference data for E is DOLCEv3 and for SMs ESA-CCI SM.

4.3 Meteo France

4.3.1 Comparison of land cover datasets and evolution

Unlike the other partners, evolving land-cover (LC) in CNRM simulations is not derived from ESA-CCI
but from LUH2 (Hurtt et al, 2020). This configuration was implemented in CNRM-ESM-2 (Séférian et
al 2019) with the main objective to properly simulate the carbon cycle and dust emissions.
In CONFESS land-only simulations, we focus on the biophysical impact of evolving LC, prone to
feedback on the atmosphere in seasonal predictions.
Note that the LUH2 dataset provides land-use information (as opposed to land-cover) without any
assumption on the fraction of bare-soil for example. Hence, the maps shown hereafter do not depict
LUH2 directly, but instead the CNRM model vegetation type fractions after disaggregation of LUH2
information into CNRM plant functional types, by means of an automated algorithm.

In the CNRM model, the default fixed LC configuration is called Ecoclimap (Masson et al 2003, Faroux
et al, 2013 ). It is a high-resolution LC map representing vegetation types, rocks and bare soil fraction
as well as permanent snow or ice corresponding to the year 2000. In figure 6 are shown the
Ecoclimap fractions of high and low vegetation at the resolution of the climate model (left-hand
column), and the corresponding fractions for the year 2000 in the evolving LC configuration (middle

D1.3 Suitable vegetation modelling configuration 11
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column) and in the ESA-CCI dataset after applying regridding and smoothing filters (right-hand
column). At first glance, the patterns and fraction ranges look fairly similar, but the differences (Fig.
7) reveal locally important discrepancies. The most striking one is the excessive fraction of low
vegetation over the Arabian peninsula in CNRM evolving LC configuration, and the lack of it over
south-east Asia. The former issue has been pointed out in Séférian et al (2020) but left as is.

Figure 6 High and low vegetation fraction in 2000 used by ila (left) ila_plc (middle) and ESA-CCI (right)

Figure 7 Differences of high and low vegetation fraction in 2000 between those used by ila_plc and (left) ila, (right) ESA-CCI

The compared evolution of low and high vegetation fractions between 1993 and 2019 also show
inconsistencies (Fig. 8). Both datasets depict a decrease (increase) in high vegetation fraction over
South (North) America but with different amplitude and location. The strong increase in low
vegetation fraction in Sahel for CNRM tends to compensate for the lack of it in the year 2000 (Fig. 7
bottom-right). It replaces bare soils in the model, consistently with the overall greening trend of
drylands, mentioned in the IPCC special report on Land (cf. Fig 3.6 and associated comments in
Shukla et al. 2019)

D1.3 Suitable vegetation modelling configuration 12
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Figure 8 Difference in high and low vegetation fraction between 1993 and 2019 for ila_plc (left) and ESA-CCI (right)

Overall, this comparison of LC maps reveals large differences between datasets and pleads for
cautious interpretation of the simulations.

4.3.2 Comparison of offline land simulations with different vegetation configurations

Figure 9 indicates the mean annual bias in latent heat flux for 3 simulations. The model shows

consistent positive latent heat flux bias almost everywhere, but considering the uncertainty of the

reference dataset and the fact that the simulation is uncoupled, we should not take this overall

positive bias for granted. The main interest of this figure is to highlight the very limited impact of

vegetation configuration on latent heat flux bias patterns.

D1.3 Suitable vegetation modelling configuration 13
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(a) (b)

(c) (d)

Figure 9: Annual mean latent heat flux in eco (a) and mean bias against DOLCE for eco (b), ila (c) and ila_plc (d), over the
1993-2018 period (Unit: W/m²)

For each grid-point, the correlation of summer (JJA) mean latent heat flux values is computed against

the reference DOLCE over the 1993-2018 period. As shown in figure 10, the correlation is fairly high

in the eco simulation over relatively dry regions such as western North America, south-east Europe,

Australia and Asian steppes, but also humid South-East Asia. The different vegetation configurations

all lead to increased correlation over northern hemisphere mid-latitudes. While the simulation pla

with prescribed “perfect” LAI does perform better near the equator and northern America,

simulations ila and ila_plc with interactive LAI show increased correlation over Europe. The positive

impact of evolving LC is noticeable over Argentina, where the fraction of high vegetation decreases

throughout the 1993-2018 period (cf. left-hand maps in figure 8). This result is promising in the

perspective of considering interannually varying vegetation schemes in forthcoming seasonal

forecast systems, but needs to be further consolidated.
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(a) (b)

(c) (d)

Figure 10: JJA latent heat flux correlation in eco against DOLCE (a) and correlation difference for pla minus eco (b), ila
minus eco (c) and ila_plc minus eco (d), over the 1993-2018 period.

The trend in latent heat flux in the eco simulation shows limited agreement with the reference

dataset (DOLCE), with particularly strong negative patterns over south-east South America and

Central Africa (Fig. 11a-b). Simulations with interactive LAI tend to accentuate these negative

patterns although with a spatial shift (Fig. 11c). Evolving land cover (simulation ila_plc) leads to a

reduction of the negative trend located over Argentina, eastern Brazil and Sahel, regions where the

land cover maps indicate an increase of low vegetation fraction throughout the 1993-2018 period.

However, the magnitude of trends in DOLCE and in the Météo France baseline simulation is ~5 times

higher than that of trend differences between model simulations with improved vegetation

variability and the baseline simulation. This result suggests that the atmospheric forcing

predominates the vegetation variability among factors controlling the trend in latent heat flux.
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(a) (b)

(c) (d)

Figure 11: Latent heat flux trend in DOLCE (a), eco(b) and trend difference for ila minus eco (c)) and ila_plc minus ila (d),
over the 1993-2018 period (Unit: W/m² per decade)

Hereafter, we evaluate the impact of vegetation configurations on soil moisture climatology,

interannual variability and trend.

The global and local seasonal cycles depicted in figure 12 show overall consistency, but with large

differences in magnitude. In particular, the magnitude difference between the two references

generally exceeds by far the difference between model simulations. In many cases, the simulation

with perfect prescribed LAI (pla) has the wettest soils, and eco the driest. Considering the

discrepancies between references, and thus the uncertainty of the “true” soil moisture, we cannot

draw robust conclusions from the analysis of soil moisture seasonal cycle. In the following analyses,

we use a linear combination (arithmetic average) of both GLEAM and ERA5-Land products as the

reference (REF) for soil moisture, as in Decharme et al. (2019).

D1.3 Suitable vegetation modelling configuration 16
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(a) (b) (c)

(d) (e) (f)

Figure 12: Seasonal cycle of soil moisture (top one-meter depth) at the global scale (a) and over the 5 regions
indicated by red boxes on the left-hand map: (b) Sahel, (c) Europe, (d) Central USA, (e) Amazon, (f) China. The green
and black lines correspond to GLEAM and ERA5-Land references, respectively. The blue lines correspond to the
simulations (solid) eco, (dotted) pla, (dashed) ila and (dash-dotted) ila_plc, over the 1993-2018 period (Unit: m3/m3)

Unlike latent heat flux, JJA correlation against REF for soil moisture is high (>0.5) for eco over most of

the globe, but Sahara desert and northern Amazon where soil moisture variations are weak (Fig.

13a). Simulations with interactive vegetation reveal a decrease of this correlation by up to 0.2 over

several regions, in particular Eurasian steppes, southern Africa, Iberian peninsula and Australia.

Interestingly, the regions showing a decreased correlation barely overlap with those showing

increased correlation in latent heat flux (fig.10 c-d).

(a) (b) (c)

Figure 13: JJA soil moisture correlation in eco against REF (a) and correlation difference for pla minus eco (b), ila minus
eco (c) and ila_plc minus eco (d), over the 1993-2018 period.
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The trends in soil moisture are relatively consistent for REF and eco simulation (Fig. 14a-b), although

the strong negative pattern over equatorial Africa mainly results from the spurious decreasing

precipitation trend in the meteorological forcing ERA5 (Gleixner et al. 2020). The negative patterns

are less pronounced in eco, over central Africa, south America and south-east Europe. Interactive

vegetation does not strongly affect soil moisture trends. Evolving land cover (Fig. 14d) impacts the

trend in Sahel, consistently with the increase of low vegetation fraction throughout the period. The

enhanced evapotranspiration due to crop extension in Sahel explains the increased trend in latent

heat flux and decreased trend in soil moisture.

(a) (b)

(c) (d)

Figure 14: Soil moisture trend in (a) REF, (b) eco, and trend difference for (c) ila minus REF and ila_plc minus REF (d),
over the 1993-2018 period (Unit: m3/m3per decade).

Considering all the available results, we advocate pursuing the CONFESS seasonal forecast

experiments with the ila configuration (interactive vegetation, fixed land-cover). The evolving land

cover scheme implemented in the CNRM model bears too much uncertainty and shows excessive

discrepancy with ESA-CCI to be used for seasonal forecasts at this stage. Additionally, improving the

land cover representation in the CNRM model is a task planned in the time frame of the Horizon

Europe CERISE project (2023-2026), ahead of the CMIP7 exercise. The interactive LAI scheme, despite

limitations, does not critically degrade the model behaviour. It shows some apparent improvement,

yet to be confirmed, in latent heat flux interannual variability over regions without any skill in

baseline simulations. Finally, preliminary results from seasonal forecast experiments with initialized

and interactive LAI indicate promising skill in LAI anomaly forecast skill. This will be further detailed in

the framework of CONFESS WP3.
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4.4 Multimodel

Here the multi-model analyses done in D1-2 are further extended. Figure 15 presents the effects of

inter-annually varying LAI experiments (sens) on anomaly evaporation and near-surface soil moisture

compared to the climatological LAI experiments (ctr). The following experiments are used as control

case: ECMWF-ctr, CNR-ctr-kv, and MF-ctr. The sensitivity case is: ECMWF-pla, CNR-pla-kv, and MF-pla

(Table 1). The effects of inter-annually varying LAI on evaporation are consistent for the three

models, with improved correlation coefficients in semiarid regions with low vegetation and reduced

correlation coefficients for the tropics and the boreal regions. On the other hand, the effects on

anomaly surface soil moisture are opposite for ECMWF and MF compared to CNR. In all three

models, the strongest effects are found in semiarid regions such as the Sahel and the US Great Plains.

Here we further elaborate on these opposing results by considering the interactions between soil

moisture, vegetation and evaporation.

Figure 15. Pearson correlation differences of anomaly evaporation (E) (left) and near-surface soil moisture (SMs) (right)

between experiment sens and ctr (sens – ctr) over the 1993-2019 period, with blue (red) improved (reduced) correlations.

From top to bottom the correlation differences for ECMWF, CNR and MF models. Reference data for E is DOLCEv3 and for

SMs ESA-CCI SM.
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The consistently improved correlation coefficients of anomaly near-surface soil moisture with respect

to ESA-CCI SM in the CNR model can be explained by the positive feedback presented on the left in

Figure 16. During dry periods, soil moisture reduces, which can, in reality, lead to vegetation water

stress. In the sensitivity models, this is reflected by a negative LAI anomaly. The reduced LAI leads to

a reduced effective vegetation cover, and an increased bare soil cover. As a consequence, soil

evaporation increases, which further reduces the near-surface soil moisture in a positive feedback.

This feedback is activated with the inter-annually varying LAI in SENS only if the effective vegetation

cover is represented as a function of the LAI. In the ECMWF and MF models, the effective vegetation

cover is fixed, and the process described on the left in Figure 16 cannot be activated.

In the ECMWF and MF models the negative feedback presented on the right in Figure 16 is dominant.

Here, the reduced LAI leads to reduced transpiration, because transpiration is directly a function of

the LAI. As a consequence, the negative soil moisture anomaly is dampened through this negative

feedback, because less water is extracted. We hypothesize that this negative feedback causes the

opposite effects on near-surface soil moisture between the models (Figure 15).

Figure 16. Most dominant vegetation-soil moisture interactions activated with the inter-annually varying LAI in SENS

compared to CTR in (left) the CNR model and (right) the MF and ECMWF models. Upward (downward) arrows indicate

positive (negative) change in the involved variables. Positive (blue) arrows indicate positive feedback and negative (yellow)

arrows indicate negative feedback. +/- refer to the resulting positive/negative feedback loop relative to the sign of the

change of the involved variables. Dashed lines are only represented in the CNR model.

Overall, we can conclude from the multi-model evaluation that inter-annually varying LAI is essential

to capture variations in evaporation and soil moisture. However, for an adequate representation of

the interactions between near-surface soil moisture, vegetation and soil evaporation, the

exponentially varying relation between LAI and effective vegetation cover used in the CNR model is

needed. The results provide a recommendation for the other modelling groups to integrate a similar

representation of the effective vegetation cover as done in the CNR model.
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5 Conclusion

The CONFESS WP1 has led to the production and dissemination of homogenized LAI time series and

land cover maps spanning the period 1993-2019. These products, among others, have allowed each

partner to perform a range of offline land-only simulations with a common atmospheric forcing

derived from the ERA5 reanalysis over the same period. The goal was to evaluate the impact of

different vegetation set-up concerning the leaf area index, fraction of vegetation cover and spatial

distribution of vegetation types.

Results presented in the three WP1 deliverables have allowed each partner to identify the most

suitable vegetation configuration to be used in a coupled prediction framework, for skill evaluation

before a potential transfer to operations.

The first lesson learnt from these evaluations is that moving forward towards a better representation

of vegetation in models needs to be a stepwise process. First attempts to prescribe a more realistic

vegetation do not guarantee to improve the model skill, notably because models have been tuned

with a baseline climatological vegetation configuration. Thus, models require cautious parameter

adjustments to fully benefit from enhanced vegetation configurations, as demonstrated by ECMWF

for their ECLand model. Another way forward is to take advantage of the homogenized CONFESS-LAI

(see Deliverable D.1) and CGLS-FCover1 openly available dataset to improve existing

parameterizations. By doing so, CNR managed to develop a scheme allowing the fraction of effective

vegetation cover to vary as a function of the LAI. They find a major positive impact in terms of soil

moisture variability, highlighted by the multi-model comparison.

Another robust conclusion from WP1 results from all partners, is that the impact of evolving

land-cover is of lower magnitude than that of inter-annually varying LAI. In the specific case of MF,

land cover maps, derived from LUH2 for the CMIP needs, bear strong inconsistencies with ESA-CCI LC

maps used by the other partners. An improved strategy to disaggregate LUH2 land use types into

adequate plant functional types consistently with ESA-CCI data is now underway. Consequently,

unlike CNR and ECMWF, the MF model is not ready to adopt the evolving land cover scheme at this

stage.

The interactive LAI scheme tested in the MF model improves the interannual variability of latent heat

flux (see also Deliverable D1.2) and mitigates soil moisture depletion during droughts. Due to this

positive impact, its usability for real-time forecasts, and promising preliminary results of LAI

forecasts, this configuration is the most suitable for MF forecast experiments.

The choice of the most suitable vegetation configuration made by each partner derives mainly (but

not only) from the analysis of stand-alone land surface simulations. The coupling with the

atmosphere may lead to drastically different model responses (e.g. Laguë et al, 2019) and therefore

the model evaluation effort must be pursued to validate the modelling choices. In that respect, the

authors recommend that the evaluations of seasonal/decadal hindcasts carried out in the framework

of CONFESS be evaluated not only for their prediction skill but also for the bias, variability and trend

of forecast atmospheric variables.

1Copernicus Global Land Service - Fraction of vegetation Cover
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