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1 Executive Summary

Vegetation plays a crucial role in the land surface water and energy balance at the global scale. The
availability of good quality Earth observation products covering recent decades together with
state-of-the-art modelling capacity provide the unique opportunity to better represent the
vegetation and its time evolution in land surface models; and ultimately in coupled models used in
climate forecast systems. In the framework of CONFESS, homogeneized high resolution observational
datasets of Leaf Area Index (LAI) and Land Cover (LC) have been used to perform and evaluate land
surface simulations over the period 1993-2019 with different set-up of vegetation configurations, but
a common atmospheric forcing derived from the ERA5 reanalysis. The present document completes
the assessment of these simulations provided in the previous deliverable D1.2., separately for each
partner as well as jointly (multi-model approach).

This deliverable takes stock of the full set of simulations to identify the more suitable vegetation
configuration to be adopted for seasonal or decadal experiments, as proof of concept of future
systems. The main lessons learnt and implications of operational implementation of these
developments are provided in the conclusions, which can be summarized as follows:

1) Improvement and careful tuning of land models is needed in order to take advantage of the
improved observational datasets. The new observational datasets will help the model development.

2) Temporal variations in LAl have stronger impact on the interannual variations of latent heat and
soil moisture than the temporal variations in LC/LU. Because of this, it is expected that in the future,
inclusion of prognostic vegetation models will contribute to the skill improvement of seasonal
forecasts.

3) The LC/LU datasets from CMIP largely differ from those from ESA-CCI. There is a need for a joint
effort towards consistent data sets that can be used for climate simulations, reanalyses and initialized
predictions.

D1.3 Suitable vegetation modelling configuration 3
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2 Introduction

2.1 Background

Vegetation variability at seasonal and inter-annual time scales strongly controls water and energy
balances of the land surface. However, state-of-the-art land surface models (LSMs) included in
short-term climate prediction systems (e.g. MeteoFrance and ECMWF SEAS5) do not account for
sufficiently realistic land cover (LC) and vegetation boundary conditions and do not include
parameterizations able to interactively model seasonal to inter-annual variations in vegetation
density. Specifically, LC does not change inter-annually in these LSMs, while it is well known to have
been changing due to, for example, deforestation or vegetation shifts. Similarly, while the
climatological seasonal variations in vegetation density (of which Leaf Area Index, LAI, is a proxy) are
described in these LSMs, the inter-annual variations of LAl due, for example, to droughts are not
represented. Realistic representations of inter-annual variations in LC and LAl are fundamental to
adequately model the signal due to variations in land surface-atmosphere interactions. New
observations and latest-generation vegetation data are therefore of paramount importance to
properly constrain LSMs used for offline analysis/initialization and for seasonal-to-decadal
predictions done with fully coupled climate models.

2.2 Scope of this deliverable

2.3 Objectives of this deliverable

The objective of this deliverable is to provide a comprehensive assessment of the land simulations
carried out in the framework of CONFESS WP1 with different vegetation and land-cover
configurations, and to draw conclusions about the choice of the most suitable configuration to be
used in forecast systems.

2.4  Work performed in this deliverable

The work presented here is primarily concerned with evaluations of offline sensitivity simulations,
with a realistic or climatological leaf area index, and a fixed or annually changing land cover. A wealth
of details regarding model characteristics and development, reference dataset and experimental
setups have been provided in previous deliverables, so they will be described synthetically here, with
a cross-reference to those documents if necessary.

2.5 Deviations and countermeasures

No deviations have been encountered.

D1.3 Suitable vegetation modelling configuration 4
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3 Data and methods

All the experiments carried out in the framework of this work package consist of offline land-only
simulations forced by hourly atmospheric fields derived from the ERA5 atmospheric reanalysis
(Hersbach et al. 2020) through the common period 1993-2019 (Table 1).

Details about reference datasets and land surface models can be found in Deliverable D1.2. For the

sake of clarityy, we remind that the DOLCE v3 (Derived Optimal Linear Combination
Evapotranspiration version 3) and CLASS (Conserving Land Atmosphere Synthesis Suit) products are
used as references for latent heat flux in this document (Hobeichi et al., 2021). The references used
for soil moisture (SM) are the So.Mo. (O and Orth, 2021) and ESA-CCI SM (Dorigo et al., 2017, Gruber
et al. 2019) products.

Issues have been detected in the Météo France Ctr experiment used to produce figures 36 and 37 of
Deliverable D1.2. The simulation has been re-run after fixing the issue and the model output files

shared among partners (see multi-model analysis in section 4.4 of the present report).

D1.3 Suitable vegetation modelling configuration 5
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Table 1. Details of experimental setup for CNR, MF and ECMWF models.

Institute Experiment
CNR ctr-k5

ctr-kv

pla-k5

pla-kv
plalc-k5

plalc-kv

MF eco
ctr
pla

ila
ila_plc

ECMWEF ctr

plc

pla

plalc

Period

1993-2019

1993-2019

1993-2019

1993-2019

1993-2019

1993-2019

1950-2020

1993-2019

1982-2019

1950-2020
1950-2020

1993-2019

1993-2019

1993-2019

1993-2019

Spatial
resolution
T255

T255

T255

T255
T255

T255

T127
T127
T127

T127
T127

TL639
TL639
TL639

TL639

LAI configuration

Climatological
(1993-2019)
Climatological
(1993-2019)
Time varying LAI
for 1993-2019

Time varying LAI
for 1993-2019
Time varying LAI
for 1993-2019
Time varying LAI
for 1993-2019

Ecoclimap LAI
climatology
Climatological
(1993-2019)
Time varying LAI
Dynamic LAI
Dynamic LAI

Climatological
(1993-2019)
Climatological
(1993-2019)
Time varying LAI
for 1993-2019
Time varying LAI
for 1993-2019
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Land cover configuration
1993 LC for 1993-2019
1993 LC for 1993-2019

1993 LC for 1993-2019

1993 LC for 1993-2019

Time varying LC for
1993-2019
Time varying LC for
1993-2019

2000 LC for 1950-2020
2000 LC for 1993-2019

2000 LC for 1950-2020
2000 LC for 1950-2020
Time varying LC for
1950-2020 (derived from
LUH2)

2019 LC for 1993-2019
Time varying LC for
1993-2019

2019 LC for 1993-2019

Time varying LC for
1993-2019

Effective vegetation
cover configuration
k=0.5

k vegetation specific

k=0.5

k vegetation specific
k=0.5

k vegetation specific
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4 Results

In this section, the 3 partners involved provided the latest results from the sets of offline 1993-2019

land simulations with specific vegetation (LAl and land cover) configuration. The last subsection
completes the multi-model analysis started in the Deliverable D1.2.

4.1 ECMWF

For ECMWEF, the data used in this project is based on the C3S/ESA-CCI LULC and the CGLS LAI. The
details of the data processing and homogenisation are shown in Deliverable D1.1.

It is shown that the time varying LULC data is spatially and temporally consistent and suitable for
future operational implementation given an appropriate choice of the cross-walking table between
the ESA-CCI PFT and the considered model PFT classification. For the time varying LAl (Figure 1) the

data is shown to be suitable for use with cautious consideration for the period prior to 1999 over the
tropical area, hence 1999-2019 was considered as a reference period.

Global mean Leaf Area Index from CGLS v2 (GEOV2)
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Figure 1. Harmonised global mean CGLS GEOV2 LAl over the 1999-2020 period

When considering LULC data for a recent year (2019) and climatological LAl data based on the
1999-2019 period, the ECMWEF system showed mixed positive and negative impacts on surface fluxes

and 2m temperature, pointing to the need for further adjustments of the model parameters to suit
the new data as it considerably changes the model surface status.

The impact of using time-varying LAl and LULC is evaluated by focusing on both extreme events and
long term means of surface latent heat flux and soil moisture. The detailed results corresponding to
the different experiments setup (Table 1) are shown in deliverable D1.2. In this document, the main
conclusions and recommendations for future developments are presented.

D1.3 Suitable vegetation modelling configuration
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For ECMWEF land surface model (ECLand), both Latent heat flux and soil moisture evaluations showed
regional differences. The overall skill is, however, marked by a stronger impact when using varying
LAl compared to when using varying LULC data only (Figure 2).

-0.045  —0.030  -0.015 0.000 0.015 0.030 0.045
Relative differences in mean correlation surface sm

-0.045  -0030  -0.015  0.000 0.015 0.030 0.045
Relative differences in mean correlation surface sm

Figure 2: Relative differences in mean correlation for the ECMWF model with regards to the the So.Mo (Sungmin O and R.
Orth, 2021) soil moisture data of surface soil moisture anomalies between PLC and CTR simulations (upper panel) and PLA
and CTR simulations (lower panel) over the So.Mo period (2000-2019).

D1.3 Suitable vegetation modelling configuration 8
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The above results were confirmed with the impact on extreme events, which showed more
sensitivity to the time varying LAl than the LULC. Although some of the comparisons with different
observational based products (FLUXCOM and GLEAM) were conflicting over some regions, the overall
outcome was confirmed through the multi-model comparison (section 4.4) and using advanced
observational products (CLASS and DOLCE) emphasising the positive impact in better detecting
extreme events (Figure 3) when using time-varying vegetation data (mainly LAI).

< - s -
C S . =
¢ . - . .‘ . :- -
-
37 -28 18 -9 7 b -4 -2 -1 1 2 4 5 7 9 18 28 37
[ . BEE——— |

Figure 3. Latent Heat flux absolute bias difference with regards to CLASS data (W/m2) (Hobeichi et al., 2020) between time
varying LAl and LULC and control simulation for the European drought (April 2003)

These results triggered new developments within ECLand to better adapt the model parameters to
the new LULC and LAl maps and allow operational implementation of these maps as climatological
data in a first phase and time varying in a second phase. As a benefit from CONFESS, the results of
these developments for the coupled medium range forecast when using the new 2010-2019
climatological LAl and 2019 LULC shows improved atmospheric scores as depicted by the RMSE
reduction of the temperature with regards to the ECMWF system's own analysis (Figure 4). These
new results consolidate the importance of accurate and up-to-date vegetation data for better
coupled atmospheric simulations.

D1.3 Suitable vegetation modelling configuration 9
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Figure 4. Change in the medium range temperature RMSE with regards to own analysis when using the new 2019 LULC and
the 2010-2019 based climatological LAl data (Blue indicates a reduction in the RMSE)

4.2 CNR

The modelling results of CNR models are described in detail in D1.2. Here we provide a summary of
the most relevant findings of the different model configurations tested. Figure 5 shows the difference
in anomaly correlation of total evaporation (E) and near-surface soil moisture (SMs) between
experiments ctr-k5 and plalc-kv (table 1), with respect to DOLCEv3 evaporation and ESA-CCI soil
moisture. We found consistent improvements in correlation coefficients for both E and SMs in
semiarid regions, during the dry season. These improvements are mostly attributed to the
implementation of the inter-annually varying LAIl, and inter-annually varying effective vegetation
cover (which is a function of LAI). The reduced correlation coefficients for anomaly E in the boreal
regions are partly related to a poor fit of the effective vegetation cover parameterization for high LAI
values for short grass and tundra (Figure 29 in D1.2). The improved effective vegetation cover
parameterization consistently improved the model effective vegetation cover, and regionally
improved SMs and E. The inter-annually varying land cover consistently changed the evaporation and

D1.3 Suitable vegetation modelling configuration 10
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soil moisture in regions with major land cover changes, but the effects were small. All three model
developments contribute to an improved representation of vegetation variability, but alter the model
land surface states and fluxes differently, with different limitations. Overall, the improved vegetation
variability led to improved anomaly correlations of E and SMs improved in 68% and 89% of the land
area, respectively. Considering all the results, we conclude that the most suitable vegetation
configuration is represented by the plalc-kv experiment that includes all three model developments.

Ar E-anomaly (plalc-kv — ctr-k5) Ar SMg-anomaly (plalc-kv — ctr-k5)

.0.10 -0.06 -0.02 0.02 0.06 0.10
Ar (-)

Figure 5. Pearson correlation differences of anomaly evaporation (E) and near-surface soil moisture (SMs) between
experiment plalc-kv and ctr-k5 (plalc-kv — ctr-k5) with blue (red) improved (reduced correlations for the seasons DJF and JJA.
Reference data for E is DOLCEv3 and for SMs ESA-CCI SM.

4.3 Meteo France

4.3.1 Comparison of land cover datasets and evolution

Unlike the other partners, evolving land-cover (LC) in CNRM simulations is not derived from ESA-CCI
but from LUH2 (Hurtt et al, 2020). This configuration was implemented in CNRM-ESM-2 (Séférian et
al 2019) with the main objective to properly simulate the carbon cycle and dust emissions.

In CONFESS land-only simulations, we focus on the biophysical impact of evolving LC, prone to
feedback on the atmosphere in seasonal predictions.

Note that the LUH2 dataset provides land-use information (as opposed to land-cover) without any
assumption on the fraction of bare-soil for example. Hence, the maps shown hereafter do not depict
LUH2 directly, but instead the CNRM model vegetation type fractions after disaggregation of LUH2
information into CNRM plant functional types, by means of an automated algorithm.

In the CNRM model, the default fixed LC configuration is called Ecoclimap (Masson et al 2003, Faroux
et al, 2013 ). It is a high-resolution LC map representing vegetation types, rocks and bare soil fraction
as well as permanent snow or ice corresponding to the year 2000. In figure 6 are shown the
Ecoclimap fractions of high and low vegetation at the resolution of the climate model (left-hand
column), and the corresponding fractions for the year 2000 in the evolving LC configuration (middle

D1.3 Suitable vegetation modelling configuration 11
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column) and in the ESA-CCI dataset after applying regridding and smoothing filters (right-hand
column). At first glance, the patterns and fraction ranges look fairly similar, but the differences (Fig.
7) reveal locally important discrepancies. The most striking one is the excessive fraction of low
vegetation over the Arabian peninsula in CNRM evolving LC configuration, and the lack of it over
south-east Asia. The former issue has been pointed out in Séférian et al (2020) but left as is.

CNRM(Ecocl.) high veg. fraction (2000) CNRM(Luh2) high veg. fraction (2000)

ESA-CCI high veg. fraction (2000)

T 1
80 100

Figure 6 High and low vegetation fraction in 2000 used by ila (left) ila_plc (middle) and ESA-CCI (right)

CNRM(Luh2) minus CNRM(Ecocl.) high veg. fraction (2000)

CNRMI{Luh2) minus ESA-CCI high veg. fraction (2000}

Figure 7 Differences of high and low vegetation fraction in 2000 between those used by ila_plc and (left) ila, (right) ESA-CCI

The compared evolution of low and high vegetation fractions between 1993 and 2019 also show
inconsistencies (Fig. 8). Both datasets depict a decrease (increase) in high vegetation fraction over
South (North) America but with different amplitude and location. The strong increase in low
vegetation fraction in Sahel for CNRM tends to compensate for the lack of it in the year 2000 (Fig. 7
bottom-right). It replaces bare soils in the model, consistently with the overall greening trend of
drylands, mentioned in the IPCC special report on Land (cf. Fig 3.6 and associated comments in
Shukla et al. 2019)

D1.3 Suitable vegetation modelling configuration 12
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Evolution of high veg. fraction between 1993 and 2019

High veg. fraction
High veg. fraction

Low veg. fraction
Low veg. fraction
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Figure 8 Difference in high and low vegetation fraction between 1993 and 2019 for ila_plc (left) and ESA-CCI (right)

Overall, this comparison of LC maps reveals large differences between datasets and pleads for
cautious interpretation of the simulations.

4.3.2 Comparison of offline land simulations with different vegetation configurations

Figure 9 indicates the mean annual bias in latent heat flux for 3 simulations. The model shows
consistent positive latent heat flux bias almost everywhere, but considering the uncertainty of the
reference dataset and the fact that the simulation is uncoupled, we should not take this overall
positive bias for granted. The main interest of this figure is to highlight the very limited impact of
vegetation configuration on latent heat flux bias patterns.

D1.3 Suitable vegetation modelling configuration 13
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Figure 9: Annual mean latent heat flux in eco (a) and mean bias against DOLCE for eco (b), ila (c) and ila_plc (d), over the
1993-2018 period (Unit: W/m?)

For each grid-point, the correlation of summer (JJA) mean latent heat flux values is computed against
the reference DOLCE over the 1993-2018 period. As shown in figure 10, the correlation is fairly high
in the eco simulation over relatively dry regions such as western North America, south-east Europe,
Australia and Asian steppes, but also humid South-East Asia. The different vegetation configurations
all lead to increased correlation over northern hemisphere mid-latitudes. While the simulation pla
with prescribed “perfect” LAl does perform better near the equator and northern America,
simulations ila and ila_plc with interactive LAl show increased correlation over Europe. The positive
impact of evolving LC is noticeable over Argentina, where the fraction of high vegetation decreases
throughout the 1993-2018 period (cf. left-hand maps in figure 8). This result is promising in the
perspective of considering interannually varying vegetation schemes in forthcoming seasonal
forecast systems, but needs to be further consolidated.

D1.3 Suitable vegetation modelling configuration 14
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Figure 10: JIA latent heat flux correlation in eco against DOLCE (a) and correlation difference for pla minus eco (b), ila
minus eco (c) and ila_plc minus eco (d), over the 1993-2018 period.

The trend in latent heat flux in the eco simulation shows limited agreement with the reference
dataset (DOLCE), with particularly strong negative patterns over south-east South America and
Central Africa (Fig. 11a-b). Simulations with interactive LAl tend to accentuate these negative
patterns although with a spatial shift (Fig. 11c). Evolving land cover (simulation ila_plc) leads to a
reduction of the negative trend located over Argentina, eastern Brazil and Sahel, regions where the
land cover maps indicate an increase of low vegetation fraction throughout the 1993-2018 period.
However, the magnitude of trends in DOLCE and in the Météo France baseline simulation is ~5 times
higher than that of trend differences between model simulations with improved vegetation
variability and the baseline simulation. This result suggests that the atmospheric forcing
predominates the vegetation variability among factors controlling the trend in latent heat flux.

D1.3 Suitable vegetation modelling configuration 15
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Figure 11: Latent heat flux trend in DOLCE (a), eco(b) and trend difference for ila minus eco (c)) and ila_plc minus ila (d),
over the 1993-2018 period (Unit: W/m? per decade)

Hereafter, we evaluate the impact of vegetation configurations on soil moisture climatology,
interannual variability and trend.

The global and local seasonal cycles depicted in figure 12 show overall consistency, but with large
differences in magnitude. In particular, the magnitude difference between the two references
generally exceeds by far the difference between model simulations. In many cases, the simulation
with perfect prescribed LAl (pla) has the wettest soils, and eco the driest. Considering the
discrepancies between references, and thus the uncertainty of the “true” soil moisture, we cannot
draw robust conclusions from the analysis of soil moisture seasonal cycle. In the following analyses,
we use a linear combination (arithmetic average) of both GLEAM and ERA5-Land products as the
reference (REF) for soil moisture, as in Decharme et al. (2019).
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Figure 12: Seasonal cycle of soil moisture (top one-meter depth) at the global scale (a) and over the 5 regions
indicated by red boxes on the left-hand map: (b) Sahel, (c) Europe, (d) Central USA, (e) Amazon, (f) China. The green
and black lines correspond to GLEAM and ERA5-Land references, respectively. The blue lines correspond to the
simulations (solid) eco, (dotted) pla, (dashed) ila and (dash-dotted) ila_plc, over the 1993-2018 period (Unit: m*/m?)

Unlike latent heat flux, JJA correlation against REF for soil moisture is high (>0.5) for eco over most of
the globe, but Sahara desert and northern Amazon where soil moisture variations are weak (Fig.
13a). Simulations with interactive vegetation reveal a decrease of this correlation by up to 0.2 over
several regions, in particular Eurasian steppes, southern Africa, Iberian peninsula and Australia.
Interestingly, the regions showing a decreased correlation barely overlap with those showing
increased correlation in latent heat flux (fig.10 c-d).

_ Comslation Ijja) mirssisc - REF (1993-2018)
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Figure 13: JIA soil moisture correlation in eco against REF (a) and correlation difference for pla minus eco (b), ila minus
eco (c) and ila_plc minus eco (d), over the 1993-2018 period.
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The trends in soil moisture are relatively consistent for REF and eco simulation (Fig. 14a-b), although
the strong negative pattern over equatorial Africa mainly results from the spurious decreasing
precipitation trend in the meteorological forcing ERA5 (Gleixner et al. 2020). The negative patterns
are less pronounced in eco, over central Africa, south America and south-east Europe. Interactive
vegetation does not strongly affect soil moisture trends. Evolving land cover (Fig. 14d) impacts the
trend in Sahel, consistently with the increase of low vegetation fraction throughout the period. The
enhanced evapotranspiration due to crop extension in Sahel explains the increased trend in latent
heat flux and decreased trend in soil moisture.
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Figure 14: Soil moisture trend in (a) REF, (b) eco, and trend difference for (c) ila minus REF and ila_plc minus REF (d),
over the 1993-2018 period (Unit: m*/m°per decade).

Considering all the available results, we advocate pursuing the CONFESS seasonal forecast
experiments with the ila configuration (interactive vegetation, fixed land-cover). The evolving land
cover scheme implemented in the CNRM model bears too much uncertainty and shows excessive
discrepancy with ESA-CCI to be used for seasonal forecasts at this stage. Additionally, improving the
land cover representation in the CNRM model is a task planned in the time frame of the Horizon
Europe CERISE project (2023-2026), ahead of the CMIP7 exercise. The interactive LAl scheme, despite
limitations, does not critically degrade the model behaviour. It shows some apparent improvement,
yet to be confirmed, in latent heat flux interannual variability over regions without any skill in
baseline simulations. Finally, preliminary results from seasonal forecast experiments with initialized
and interactive LAl indicate promising skill in LAl anomaly forecast skill. This will be further detailed in
the framework of CONFESS WP3.
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4.4 Multimodel

Here the multi-model analyses done in D1-2 are further extended. Figure 15 presents the effects of
inter-annually varying LAl experiments (sens) on anomaly evaporation and near-surface soil moisture
compared to the climatological LAl experiments (ctr). The following experiments are used as control
case: ECMWEF-ctr, CNR-ctr-kv, and MF-ctr. The sensitivity case is: ECMWF-pla, CNR-pla-kv, and MF-pla
(Table 1). The effects of inter-annually varying LAl on evaporation are consistent for the three
models, with improved correlation coefficients in semiarid regions with low vegetation and reduced
correlation coefficients for the tropics and the boreal regions. On the other hand, the effects on
anomaly surface soil moisture are opposite for ECMWF and MF compared to CNR. In all three
models, the strongest effects are found in semiarid regions such as the Sahel and the US Great Plains.
Here we further elaborate on these opposing results by considering the interactions between soil
moisture, vegetation and evaporation.

Ar E-anomaly (sens — ctr)

== <= =

—-0.08 —-0.04 0.00 0.04 0.08 —-0.08 —-0.04 0.00 0.04 0.08

Ar () Ar (-)

Figure 15. Pearson correlation differences of anomaly evaporation (E) (left) and near-surface soil moisture (SMs) (right)
between experiment sens and ctr (sens — ctr) over the 1993-2019 period, with blue (red) improved (reduced) correlations.
From top to bottom the correlation differences for ECMWEF, CNR and MF models. Reference data for E is DOLCEv3 and for
SMs ESA-CCI SM.
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The consistently improved correlation coefficients of anomaly near-surface soil moisture with respect
to ESA-CCI SM in the CNR model can be explained by the positive feedback presented on the left in
Figure 16. During dry periods, soil moisture reduces, which can, in reality, lead to vegetation water
stress. In the sensitivity models, this is reflected by a negative LAl anomaly. The reduced LAl leads to
a reduced effective vegetation cover, and an increased bare soil cover. As a consequence, soil
evaporation increases, which further reduces the near-surface soil moisture in a positive feedback.
This feedback is activated with the inter-annually varying LAl in SENS only if the effective vegetation
cover is represented as a function of the LAI. In the ECMWF and MF models, the effective vegetation
cover is fixed, and the process described on the left in Figure 16 cannot be activated.

In the ECMWF and MF models the negative feedback presented on the right in Figure 16 is dominant.
Here, the reduced LAI leads to reduced transpiration, because transpiration is directly a function of
the LAI. As a consequence, the negative soil moisture anomaly is dampened through this negative
feedback, because less water is extracted. We hypothesize that this negative feedback causes the
opposite effects on near-surface soil moisture between the models (Figure 15).
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Figure 16. Most dominant vegetation-soil moisture interactions activated with the inter-annually varying LAl in SENS
compared to CTR in (left) the CNR model and (right) the MF and ECMWF models. Upward (downward) arrows indicate
positive (negative) change in the involved variables. Positive (blue) arrows indicate positive feedback and negative (yellow)
arrows indicate negative feedback. +/- refer to the resulting positive/negative feedback loop relative to the sign of the
change of the involved variables. Dashed lines are only represented in the CNR model.

Overall, we can conclude from the multi-model evaluation that inter-annually varying LAl is essential
to capture variations in evaporation and soil moisture. However, for an adequate representation of
the interactions between near-surface soil moisture, vegetation and soil evaporation, the
exponentially varying relation between LAl and effective vegetation cover used in the CNR model is
needed. The results provide a recommendation for the other modelling groups to integrate a similar
representation of the effective vegetation cover as done in the CNR model.
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5 Conclusion

The CONFESS WP1 has led to the production and dissemination of homogenized LAl time series and
land cover maps spanning the period 1993-2019. These products, among others, have allowed each
partner to perform a range of offline land-only simulations with a common atmospheric forcing
derived from the ERAS reanalysis over the same period. The goal was to evaluate the impact of
different vegetation set-up concerning the leaf area index, fraction of vegetation cover and spatial
distribution of vegetation types.

Results presented in the three WP1 deliverables have allowed each partner to identify the most
suitable vegetation configuration to be used in a coupled prediction framework, for skill evaluation
before a potential transfer to operations.

The first lesson learnt from these evaluations is that moving forward towards a better representation
of vegetation in models needs to be a stepwise process. First attempts to prescribe a more realistic
vegetation do not guarantee to improve the model skill, notably because models have been tuned
with a baseline climatological vegetation configuration. Thus, models require cautious parameter
adjustments to fully benefit from enhanced vegetation configurations, as demonstrated by ECMWF
for their ECLand model. Another way forward is to take advantage of the homogenized CONFESS-LAI
(see Deliverable D.1) and CGLS-FCover' openly available dataset to improve existing
parameterizations. By doing so, CNR managed to develop a scheme allowing the fraction of effective
vegetation cover to vary as a function of the LAI They find a major positive impact in terms of soil
moisture variability, highlighted by the multi-model comparison.

Another robust conclusion from WP1 results from all partners, is that the impact of evolving
land-cover is of lower magnitude than that of inter-annually varying LAL In the specific case of MF,
land cover maps, derived from LUH2 for the CMIP needs, bear strong inconsistencies with ESA-CCI LC
maps used by the other partners. An improved strategy to disaggregate LUH2 land use types into
adequate plant functional types consistently with ESA-CCI data is now underway. Consequently,
unlike CNR and ECMWEF, the MF model is not ready to adopt the evolving land cover scheme at this
stage.

The interactive LAl scheme tested in the MF model improves the interannual variability of latent heat
flux (see also Deliverable D1.2) and mitigates soil moisture depletion during droughts. Due to this
positive impact, its usability for real-time forecasts, and promising preliminary results of LAl
forecasts, this configuration is the most suitable for MF forecast experiments.

The choice of the most suitable vegetation configuration made by each partner derives mainly (but
not only) from the analysis of stand-alone land surface simulations. The coupling with the
atmosphere may lead to drastically different model responses (e.g. Lagué et al, 2019) and therefore
the model evaluation effort must be pursued to validate the modelling choices. In that respect, the
authors recommend that the evaluations of seasonal/decadal hindcasts carried out in the framework
of CONFESS be evaluated not only for their prediction skill but also for the bias, variability and trend
of forecast atmospheric variables.

'Copernicus Global Land Service - Fraction of vegetation Cover
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