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1 Executive Summary 

Land Cover and vegetation observations are of paramount importance to properly constrain the land 

surface models that are included in current reanalysis and seasonal-to-decadal prediction systems. In 

this deliverable, we present the integration of the unprecedented vegetation information, from the 

latest satellite campaigns in the frame of Copernicus, into the land surface models (LSMs) used for 

reanalysis and initialization of the seasonal to decadal prediction systems.  Observational Land Cover 

(LC) and Leaf Area Index (LAI) from CONFESS deliverable D1-1 (Boussetta & Balsamo, 2021) are 

implemented as boundary conditions for the CHTESSEL (ECMWF), the EC-Earth HTESSEL-LPJGuess 

(CNR) and the ISBA-CTRIP (Météo-France) LSMs. Furthermore, a parameterization of the effective 

vegetation cover that is constrained using observations of FCover (Fraction of green Vegetation Cover) 

is developed and included in the EC-Earth HTESSEL-LPJGuess (CNR). The effects of the improved 

representation of vegetation variability from observations on the LSMs has been evaluated in offline 

simulations forced by ERA5 atmospheric forcing.  The effects on the simulated water and energy fluxes 

are first evaluated by comparing the three individual LSMs, as used by the partners involved in WP1, 

with available observations. The multi-model comparison of the sensitivities is also evaluated to 

account for model differences in configuration and parameterizations. The results and knowledge 

from the sensitivity analysis in this deliverable is driving the selection of optimal solutions and 

configurations to include in the initialization/simulation of the predictions in CONFESS WP3 and will 

further guide future developments in land surface modeling for the next generation of operational 

seasonal and multi-annual prediction systems.  
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2 Introduction 

2.1 Background 

Vegetation variability at seasonal and inter-annual time scales strongly controls water and energy 

balances of the land surface. However, state-of-the-art land surface models (LSMs) included in short-

term climate prediction systems (e.g. MeteoFrance and ECMWF SEAS5) do not account for realistic 

land cover (LC) and vegetation boundary conditions and do not include parameterizations able to 

interactively model seasonal to inter-annual variations in vegetation density. Specifically, LC does not 

change inter-annually in these LSMs, while it is well known to have been changing due to for example 

deforestation or vegetation shifts. Similarly, while the climatological seasonal variations in vegetation 

density (of which Leaf Area Index, LAI, is a proxy) are described in these LSMs, the inter-annual 

variations of LAI due for example to droughts are not represented. Realistic representation of inter-

annual variations in LC and LAI are fundamental to adequately model the signal due to variations in 

land surface-atmosphere interactions. New observations and latest-generation vegetation data are 

therefore of paramount importance to properly constrain LSMs used for off-line analysis/initialization 

and for seasonal-to-decadal predictions done with fully coupled climate models. 

2.2 Scope of this deliverable 

2.2.1 Objectives of this deliverable 

The objective of this deliverable is to integrate the unprecedented vegetation information, from the 

latest satellite campaigns in the frame of Copernicus, in the land surface models used for offline 

simulation and initialization of the prediction systems.   

 Work performed in this deliverable 

The ‘Vegetation dataset of Land Use/Land Cover and Leaf Area Index” developed in Deliverable 1.1 

(from here referred to as D1-1; Boussetta & Balsamo, 2021)  is exploited.  The work performed in this 

deliverable can be summarized as follows: 

● Model development 

o Development and technical work to implement boundary conditions from 

observational LAI and LC from D1-1. 

o Development of a parameterization of the effective vegetation cover as a function of 

LAI that is constrained using FCOVER observations (included in the EC-Earth HTESSEL-

LPJGuess by CNR only). 

● Model experiments 

o Offline land-surface model simulations using ERA5 atmospheric forcing and with the 

novel LAI and LC boundary conditions for improved representation of land surface-

atmosphere interactions and for the initialization of the seasonal-to-decadal 

prediction systems. 

o Offline land-surface model simulations using ERA5 atmospheric forcing and with the 

improved parameterization of the effective vegetation cover as a function of LAI. 

● Model evaluation 
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o The set of offline sensitivity simulations to the improved vegetation inter-annual 

variability by each partner are evaluated.   

o In a multi-model comparison, the model sensitivities to the realistic inter-annual 

vegetation variability are evaluated. 

 

2.2.2 Deviations and counter measures 

No deviations have been encountered. 
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3 Methodology 

3.1 Data description 

Here we briefly describe the observational data of LU/LC, LAI and FCOVER that are used to constrain 

the modelling in WP1. Details of the development of the LU/LC and LAI data are described in CONFESS 

deliverable D1.1. 

3.1.1 Land use / land cover data 

The ESA-CCI/C3S land cover data was used and processed in D1-1 for application in the modelling 

presented in this report. The original 300m land cover classes were aggregated to the target resolution 

and converted to the IFS vegetation types using a cross walking table. The LC data was delivered at a 

yearly resolution from 1993-2019 by ECMWF in D1.1. 

3.1.2 Leaf Area Index data 

The LAI data from CGLS/C3S (SPOT sensor: 1999-2013 and PROBAV-sensor: 2014-2019) was 

harmonized with the AVHRR-based data (1993-1999) using a Cumulative Distribution Function (CDF) 

matching approach at a 1km resolution, using the methodology described in D1.1. For the ECMWF IFS 

and EC-Earth IFS models the LAI is disaggregated into high and low LAI based on the high and low 

vegetation fractions from the LC maps. The novel CGLS LAI data was delivered for different resolutions 

at a monthly resolution for 1993-2019 by ECMWF in D1.1. 

3.1.3 Fraction of green vegetation data 

In addition to LC and LAI data we used CGLS data of the Fraction of green Vegetation Cover (FCover),  

which describes the fraction of green vegetation per unit ground area. We obtained FCover from CGLS 

at a 10-daily temporal and 1km spatial resolution (Verger et al., 2019; 

https://land.copernicus.eu/global/products/fcover). We harmonised the 1999-2013 and 2014-2019 

periods using CDF matching as described in D1.1 (Figure 1). The homogenized FCover data was used 

in combination with LAI and LC for the model development of effective vegetation cover 

parameterization (Section 3.2.3). 

 

Figure 1 Global mean FCover of original data (blue) with SPOT sensor 1999-2013 and PROBA-V sensor 2014-2019, and 
homogenized data (orange) after applying CDF-matching to the 2014-2019 period. 

  

https://land.copernicus.eu/global/products/fcover
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3.2 Model description and developments 

Here each partner describes the relevant model parameterization and developments within the 

project. 

3.2.1 Meteo France model 

The land surface model is ISBA-CTRIP (Decharme et al., 2019), embedded in the SURFEX modeling 

platform (Voldoire et al., 2017). This model version is the same as that used for CMIP6 simulations. 

 Description of the reference Land-Cover (ECOCLIMAP) 

The land cover properties are specified according to the 1-km resolution ECOCLIMAP-II database 

(Faroux et al., 2013). More than 500 land cover units are derived from the Corine Land Cover map for 

the year 2000 at 100-m resolution over Europe and from the Global Land Cover 2000 database 

elsewhere. Theses land cover units are aggregated to the model resolution into 12 subgrid land tiles 

in order to account for land cover heterogeneities, 9 of them corresponding to vegetated land types. 

Table 1. ISBA subgrid land types 

Tiles Land type 

1 Bare soil & desert 

2 Rock and urban area 

3 Permanent snow and ice 

4 Deciduous broadleaf trees & shrub 

5 Needleleaf trees 
6 Evergreen broadleaf trees 
7 C3 crops 

8 C4 crops 

9 Irrigated crops 

10 Boreal grassland 

11 Tropical grassland 

12 Peat bogs 

 

The grid cell fraction of vegetation is fixed to 0 for deserts, rock and urban areas as well as permanent 

snow and ice, to 0.95 for grasslands, peat bogs and boreal forests and to 1 for tropical evergreen 

forests. For crop tiles, this fraction f varies with LAI as in the following equation: 

𝑓 = 1 − 𝑒−0.6LAI 

The ECOCLIMAP fixed land cover can be used with either a fixed or interactive LAI scheme. 

Description of vegetation and carbon assimilation 

Vegetation in the ISBA land surface scheme is represented by a maximum of six biomass reservoir of: 

leaves, stem/twigs, wood, fine and coarse roots, and a small additional storage pool. 

The photosynthesis and associated carbon assimilation depend on the stomatal conductance of leaves 

(Jacobs, 1994, Calvet et al, 1998). In ISBA, this conductance is controlled by three factors: the 

atmospheric CO2 concentration, the atmospheric vapour pressure deficit (Joetzjer et al. 2015) and soil 

moisture availability. Finally, the soil water used for transpiration is removed throughout the root zone 

according to a vertical root-density profile. 
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Description of the fixed LAI scheme (ECOCLIMAP) 

The climatological seasonal cycle of the LAI is imposed for each land cover unit at a 10-day time step. 

This seasonal-cycle climatology is computed using the collection 5 of the Moderate Resolution Imaging 

Spectroradiometer (MODIS) leaf area index product at 1-km spatial resolution combined with the 

Normalized Difference Vegetation Index product from the SPOT/Vegetation data set from 1 January 

1999 to 31 December 2005. 

Description of prescribed inter-annual LAI in CONFESS 

The 1km LAI dataset described in section 3.1.2 was upscaled to the Tl127 grid by a bilinear 

interpolation and was disaggregated into vegetation types by conserving the same proportion of 

vegetation types by grid cell, as derived from ECOCLIMAP. Then, the LAI values are updated at each 

time step of the simulation with this dataset of interpolated 10-daily LAI values for the different 

vegetation types. 

Description of the interactive LAI scheme 

Leaf biomass is based on the carbon assimilated by photosynthesis and decreased by turnover, 

respiration, and allocation to the other pools (Gibelin et al.,2006). Leaf phenology results directly from 

the daily carbon balance of the leaves. Finally, LAI is diagnosed from leaf biomass (B) and specific Leaf 

area (SLA), which varies as a function of leaf nitrogen concentration and plant functional type:  

𝐿𝐴𝐼 = 𝐵 ∗ 𝑆𝐿𝐴 

The photosynthesis, respiration and carbon allocation schemes are further detailed in Delire et al. 

2020. 

3.2.2 ECMWF model 

Tiled ECMWF Scheme for Surface Exchanges over Land (CHTESSEL, Balsamo et al., 2011, Boussetta et 

al., 2013). The land surface model version used in CONFESS is based on the 47R3 model cycle 

(https://www.ecmwf.int/en/elibrary/20198-ifs-documentation-cy47r3-part-iv-physical-processes).   

In the current ECMWF land surface model (ECLand) and data assimilation system the land use/land 

cover (LULC) is processed from the Global Land Cover Characteristics data set (GLCC, Loveland et al., 

2000) and the Leaf Area Index (LAI) is based on a 2000-2008 climatology from the Moderate Resolution 

Imaging Spectroradiometer (MODIS) collection 5 (MOD15A2) data. An observation operator that 

disaggregates the LAI into a high and low vegetation component is applied to the observed data to 

allow using it in the ECLand system. The observed LAI was rescaled using a static LAI dataset to 

guarantee neutral impact on the ECMWF model (Boussetta et al., 2013).  These crucial input data do 

not fully benefit from new developments of vegetation related remote sensing vegetation data. 

Recent studies have identified limitations of the current land cover and LAI datasets used in ECLand 

(Johannsen et al., 2019) over several regions of the world. 

Within CONFESS, the new ESA-CCI LULC and CGLS LAI (CONFESS D1.1) are used within ECLand to assess 

the impact of varying vegetation condition on the surface offline system in a first step and in the 

coupled system in a second phase within WP3. 



CONFESS 2020 

 
 

D1.2 Improved vegetation variability  11 
 

3.2.3 CNR model 

Model description 

Here we use the Hydrology Tiled ECMWF Scheme for Surface Exchanges over Land (HTESSEL) land 

surface model (Balsamo et al., 2009) as it was modified and implemented in the EC-EARTH v3 Earth 

system model (Döscher et al., 2021). In HTESSEL the vegetated area of a grid cell is divided into high 

and low vegetation tiles, with in case of snow also separate model tiles for snow on bare ground/low 

vegetation and snow beneath high vegetation (Balsamo et al., 2009). Each high and low vegetation 

tile is described by the vegetation cover fraction and the dominant vegetation type. Originally, these 

vegetation parameters were defined by the GLCC land cover dataset (Loveland et al., 2000).  

 

Figure 2 Grid cell vegetation description with example numbers. (a) ESA-CCI explicit vegetation fraction (b) HTESSEL dominant 
vegetation type and cover, (c) HTESSEL effective vegetation cover with CB bare soil cover, CL and CH low and high effective 
cover. Vegetation indices are given in Table 2. 

The original HTESSEL model describes a seasonal cycle of LAI derived from a satellite-based 

climatology based on MODIS (Boussetta et al., 2013). In the model, the LAI controls the canopy 

resistance 𝑟𝑐  through the following linear relation: 

𝑟𝑐 =
𝑟𝑠,𝑚𝑖𝑛

 𝐿𝐴𝐼
𝑓1(𝑅𝑠)𝑓2(𝐷𝑎)𝑓3(𝜃) 

With 𝑟𝑠,𝑚𝑖𝑛 the vegetation specific minimum canopy resistance and 𝑓1(𝑅𝑠),  𝑓2(𝐷𝑎),  𝑓3(𝜃) functions 

describing the dependences on shortwave radiation (𝑅𝑠), atmospheric water vapor deficit (𝐷𝑎) and 

soil moisture (𝜃). The vegetation transpiration is linearly related to 𝑟𝑐 and other atmospheric variables.  

Furthermore, the LAI controls the capacity of the model interception reservoir W1m by:  

𝑊1𝑚 = 𝑊1𝑚𝑎𝑥 ∗ (𝐶𝐵 + 𝐶𝐻 ∗ 𝐿𝐴𝐼(𝑇𝐻) + 𝐶𝐿 ∗ 𝐿𝐴𝐼(𝑇𝐿)) 

With W1max=0.0002m and CB, CH and CL the fractions of bare soil, effective high and low vegetation, 

respectively (Section 2.3.3). The interception evaporation per time step follows from the water 

content of the interception reservoir (calculated from precipitation), and W1m the potential 

evaporation. The model effective high and low vegetation cover (CH and CL) represent the part of the 

model vegetation cover (AH and AL) that is actively contributing to the water balance through 

transpiration and interception evaporation. The fraction of the grid cell not covered by the effective 

vegetation is treated as bare soil (CB) where only soil evaporation takes place. CH, CL and CB are 

described by: 
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𝐶𝐻 = 𝐶𝑣,𝐻 ⋅ 𝐴𝐻  

𝐶𝐿 = 𝐶𝑣,𝐿 ⋅ 𝐴𝐿  

𝐶𝐵 = 1 − 𝐶𝐻 − 𝐶𝐿  

with CvH and CvL the vegetation density. Originally, CvH and CvL were described by a look-up table 

with vegetation specific values, allowing for spatial variation of the CH, CL and CB fractions. However, 

this approach does not allow for temporal variations in vegetation density, so the seasonal and inter-

annual variability of vegetation effective cover is not represented. To overcome this limitation, the 

vegetation density was linked to the variability of LAI by the following exponential relation (Alessandri 

et al., 2017): 

𝐶𝑣,𝐿 = 1 − exp(−𝑘 ⋅ 𝐿𝐴𝐼𝐿) 

𝐶𝑣,𝐻 = 1 − exp(−𝑘 ⋅ 𝐿𝐴𝐼𝐻) 

with k the canopy light extinction coefficient that represents the amount of vegetation clumping 

(Anderson, 2005).  

 

Model developments 

Implementation of latest generation land cover data 

Here we apply the latest generation land cover data from ESA-CCI (Section 3.1.1). For application in 

HTESSEL the 300m data was aggregated to the model resolution T255 (~50x50km) and converted to 

the 10 vegetation types presented in Table 1 after applying the cross-walking table (D1-1). For each 

grid cell we obtain an explicit vegetation cover fraction for each vegetation type (Figure 2a). For some 

vegetation types (e.g. Crops and Deciduous broadleaf trees), the maximum explicit vegetation cover 

fraction is smaller than 1 because the cross-walking table used assumes that these vegetation types 

are always mixed with other vegetation types, and there is never a 100% cover (Table 2). In HTESSEL 

the explicit vegetation (Figure 2a) is converted to a dominant high and low vegetation type (TH and 

TL) and a total high and low vegetation fractional cover (AH and AL) (see Figure 2a,b for an example 

of this conversion). 

The changes in TL and TH directly influences the model parameterization, because several model 

parameters that control surface water and energy fluxes (vegetation root distribution, minimum 

canopy resistance and roughness lengths for momentum and heat) are prescribed by look up tables 

based on vegetation type (ECMWF, 2021). Model evaporation is calculated separately for the high and 

the low vegetation tiles, and weighted by the CL and CH fractions to obtain total grid cell evaporation. 
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Table 2 HTESSEL vegetation types according to the IFS BATS LC classification and the maximum explicit vegetation cover 
defined by the cross-walking table. 

Vegetation index High /Low Vegetation type Maximum fractional cover 

1 L Crops, mixed farming 0.90 
2 L Short grass 1.00 
3 H Evergreen needleleaf trees 0.85 
4 H Deciduous needleleaf trees 0.75 
5 H Deciduous broadleaf trees 0.70 
6 H Evergreen broadleaf trees 0.90 
9 L Tundra 1.00 
13 L Bogs and marshes 0.75 
16 L Evergreen shrubs 0.70 
17 L Deciduous shrubs 0.70 

 

Implementation of latest generation LAI data 

Here we use the novel CGLS LAI data described in Section 3.1.2 to prescribe a realistic representation 

of both seasonal cycle and inter-annual variability of LAI. The 1km LAI data was remapped to the T255 

grid by conservative interpolation and was disaggregated into low and high LAI for the use in the 

HTESSEL model setup with separate high and low vegetation tiles, based on the high and low 

vegetation cover fractions (AL and AH) (D1-1) (Figure 2b). 

Improved parameterization of the effective vegetation cover using FCover data 

Until now the canopy light extinction coefficient k was set to a constant value of 0.5 (Alessandri et al., 

2017; Krinner et al., 2005) or 0.6 (Nogueira et al., 2020; Boussetta et al., 2021). However, the effect of 

vegetation clumping, and so the shape of this relation is different for different vegetation types (Chen 

et al., 2005; Chen, 2012; Ryu, 2010). Differently from other works, we estimate vegetation specific k-

values using the satellite data of FCover and LAI (10-daily, 1km grid) together with the ESA-CCI land 

cover (yearly, 1km grid), as discussed in Section 3.1. 

We assume here that FCover is analogous to the total model vegetation density (CVH+CVL), so the 

model-k can be estimated using: 

𝐹𝐶𝑜𝑣𝑒𝑟 =  1 − 𝑒𝑥𝑝(−𝑘 ∗ 𝐿𝐴𝐼) 

We fitted the CGLS FCover observations with this equation by solving for different values of the k-

parameter for each vegetation type using a non-linear least squares optimization. To differentiate 

vegetation types, we selected grid cells with the maximum possible explicit vegetation fraction (Table 

1) for each vegetation type, for each year. For these grid cells, the FCover and LAI 10-daily data for 

1999-2019 were extracted. To make computational costs affordable while keeping a representative 

sample with robust significance of the fitting, we took a randomly selected subsample of grid points 

(2000) for each vegetation type of the LAI and FCover timesteps (10-daily). In this way we obtained 

for each vegetation type a sample of 2000 gridpoints * 36 timesteps per year * 20 years = 1 440 000 

data points. The LAI and FCover values of these data points were combined and the estimate of k was 

optimized using a non-linear least squares optimization. To optimally isolate individual vegetation 

types, the parameter fitting was done at a 1km resolution using the explicit vegetation fractions from 

ESA-CCI and the total LAI. However, in the model the effective vegetation cover is calculated at a 

coarser spatial resolution, using disaggregated LAI for the dominant vegetation types. 
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3.3 Experiments 

Table 3 summarizes the experimental set-up for the three institutes including spatial resolution, 

historical period covered, and LAI/LC configurations. 

3.3.1 MF experimental setup 

Offline simulations with Surfex (ISBA-CTRIP) were carried out at the tl127 resolution on a reduced 

Gaussian grid, and driven by hourly surface ERA5 fields upscaled at the same horizontal resolution. 4 

different simulations were performed: (i) a control run with climatological LAI and the reference fixed 

land cover map, (ii) a run with interactive LAI and the reference fixed land cover map, (iii) a run where 

LAI evolves interactively and land cover map is updated every year and derived from LUH2 (Hurtt et 

al., 2011) version 2.0h, as described in Delire et al. (2020), and (iv) a fourth run where time-varying 

1993-2019 CGLS LAI is used while keeping the reference fixed land cover map. All simulations but (iv) 

have been carried out for the period 1950-2019. 

3.3.2 ECMWF experimental setup  

Offline simulations with ECLand were carried out for the period 1993-2019 at the TL639 reduced 

Gaussian grid and driven by near-surface meteorological fields from the ECMWF ERA5 reanalysis 

having the same spatial resolution (Hersbach et al., 2020). The simulations are performed using 3 main 

configurations: (i) a control run with static 2019 ESA-CCI LULC maps and climatological CGLS LAI, (ii)) 

a second configuration where varying ESA-CCI LULC is used for the 1993-2019 period and LAI is 

climatological, (iii) a third configuration where time-varying 1993-2019 CGLS LAI is used while keeping 

the 2019 fixed LULC and (iv) a fourth configuration where both time-varying CGLS LAI and time-varying 

ESA-CCI LULC are used for the 1993-2019 period.  

3.3.3 CNR experimental setup 

CNR performed offline simulations with HTESSEL using hourly ERA5 forcing for 1993-2019, with 1980-

1993 the spin-up period. In the spin-up the LAI was set to climatological values from CGLS 1993-2019 

and LC to the values of ESA-CCI 1993. In the control experiment (ctr), the LAI and LC from the spin-up 

are also used for 1993-2019. In the LAI sensitivity experiment (pla) we replace the climatological LAI 

with the inter-annual varying CGLS LAI, keeping the LC fixed. The fixed LC is replaced by the multi-

annual varying LC from ESA-CCI to evaluate the LC sensitivity (plalc). The model sensitivity to the 

updated effective cover parameterization was tested on top of the LAI and LC variability (plalc-kv). We 

evaluated the monthly mean output of these experiments. 
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Table 3. Details of experimental setup for CNR, MF and ECMWF models. 

Institute Experiment Period Spatial 
resolution 

LAI configuration Land cover configuration Effective vegetation 
cover configuration 

CNR ctr-k5 1993-2019 T255 Climatological 
(1993-2019) 

1993 LC for 1993-2019 k=0.5 

 ctr-kv 1993-2019 T255 Climatological 
(1993-2019) 

1993 LC for 1993-2019 k vegetation specific 

 pla-k5 1993-2019 T255 Time varying LAI 
for 1993-2019 

1993 LC for 1993-2019 k=0.5 

 pla-kv 1993-2019 T255 Time varying LAI 
for 1993-2019 

1993 LC for 1993-2019 k vegetation specific 

 plalc-k5 1993-2019 T255 Time varying LAI 
for 1993-2019 

Time varying LC for 1993-
2019 

k=0.5 

 plalc-kv 1993-2019 T255 Time varying LAI 
for 1993-2019 

Time varying LC for 1993-
2019 

k vegetation specific 

       

MF ctr 1950-2020 T127 Ecoclimap 
climatology 

2000 LC for 1950-2020  

 pla 1982-2019 T127 Time varying LAI 2000 LC for 1950-2020  

 ila 1950-2020 T127 Dynamic LAI 2000 LC for 1950-2020  

 ila_plc 1950-2020 T127 Dynamic LAI Time varying LC for 1950-
2020 (derived from LUH2) 

 

       

ECMWF ctr 1993-2019 TL639 Climatological 
(1993-2019) 

2019 LC for 1993-2019  

 plc 1993-2019 TL639 Climatological 
(1993-2019) 

Time varying LC for 1993-
2019 

 

 pla 1993-2019 TL639 Time varying LAI 
for 1993-2019 

2019 LC for 1993-2019  

 plalc 1993-2019 TL639 Time varying LAI 
for 1993-2019 

Time varying LC for 1993-
2019 

 

 

3.4 Evaluation Data and Metrics 

Here we describe the reference data used to evaluate the different models. We also describe the 

evaluation metrics. 

3.4.1 Evaporation reference data 

The DOLCE (Derived Optimal Linear Combination Evapotranspiration) product combines different 

global evaporation datasets with in-situ observational data from Fluxnet towers, providing daily 

evaporation at a 0.25-degree spatial resolution for 1980-2018 (Hobeichi et al., 2021). Here we use the 

two versions DOLCEv2.1 and DOLCEv3 for evaluation of model evaporation. DOLCEv2.1 is derived from 

11 global evaporation datasets and has a smaller bias to flux tower evaporation than DOLCEv3. 

Therefore, we use DOLCEv2.1 for climatological analyses. DOLCEv3 is a linear combination of 

evaporation from ERA5-land, GLEAM v3.5a and v3.5b and FLUXCOM-RSMETEO with weights based on 

flux towers (Hobeichi et al., 2021). DOLCE v3 captures evaporation variations well and is therefore 

suitable for evaluating the effects of inter-annual varying LAI and LC on model evaporation. In addition, 

evapotranspiration from FLUXCOM-RSMETEO (combination of FLUXNET, remote sensing and 

meteorological forcing using machine learning algorithm; Jung et al., 2019) and from CLASS (similar 

approach to DOLCE but conserving energy balances; Hobeichi et al., 2021) were used as reference 

datasets for the surface latent heat flux.  
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3.4.2 Soil moisture reference data 

ESA-CCI has developed a global satellite-derived soil moisture product (ESA-CCI SM) based on multiple 

satellites with active and passive sensors (Dorigo et al., 2017; Gruber et al., 2019). This dataset has a 

daily temporal resolution for 1978-2019 and is provided at a 0.25-degree grid. Here we used the 

combined active-passive product interpolated to the model spatial resolution, obtained from 

https://esa-soilmoisture-cci.org/. The dataset contains spatial and temporal gaps due to densely 

vegetated areas (tropical forests) and snow coverage. Here we only use grid cells with a temporal 

coverage larger than 60%. The ESA-CCI SM represents the soil moisture in the top soil layer ~0-5 cm. 

Here we compare these values to the ECMWF and CNR model first layer soil moisture (7 cm) and the 

MF model first two layers soil moisture (4 cm). As the represented depths differ, we standardize the 

SM values using the monthly standard deviation in order to consistently compare the models with the 

ESA-CCI SM. Another reference data used to evaluate model surface soil moisture (0-10 cm) is the 

machine learning observationally based soil moisture product SoMo.ml (O and Orth 2021).  

3.4.3 Evaluation metrics 

Root Mean Square Error 

is computed with the following equation: 

𝑅𝑀𝑆𝐸 =
√∑ (𝑦𝑡̌ − 𝑦𝑡)2𝑇

𝑡=1

𝑇
 

where 𝑦𝑡̌and 𝑦𝑡 are the absolute model and reference values in time t, respectively, and T is the total 

considered time steps. For the RMSE of the inter-annual anomalies, the mean seasonal cycles 

(computed for the bias metric) is removed from the model and reference datasets respectively to 

obtain the anomalies. Then, the RMSE is estimated based on these anomalies.  

Pearson correlation 

is computed with the following equation: 

𝑐𝑜𝑟𝑟𝑥,𝑦 =
𝑐𝑜𝑣(𝑋, 𝑌)

𝜎𝑥𝜎𝑦
 

where cov is the covariance, 𝜎𝑥 and 𝜎𝑦 are the standard deviation of X and Y respectively.  

Seasonal bias 

The mean seasonal cycles (long term mean of every day of the year) for both model and reference 

datasets are computed. Then the reference’s mean seasonal cycle is subtracted from the model’s 

mean seasonal cycle. Finally, the mean bias for each season (DJF-MAM-JJA-SON) is estimated. 

  

https://esa-soilmoisture-cci.org/
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4 Results 

3.3 Meteo France 

The prognostic LAI and the interactive vegetation in SURFEX are evaluated against the CGLS LAI. The 

impact of the varying LAI on surface latent heat flux is evaluated with offline land surface simulations 

driven by the ERA5 atmospheric reanalysis. In a second evaluation, two past droughts in Europe are 

analysed to evaluate the model ability to reproduce LAI anomalies during droughts. 

3.3.1 Vegetation modelling 

The LAI from ctr is always higher than the CGLS observations (Figure 3). The overestimation of LAI is 

particularly strong at mid-latitudes in both hemispheres. As shown in Figure 4 in the Northern 

Hemisphere, there is a particularly strong overestimation of LAI in the boreal forests of Canada and 

Russia. These overestimations are specific to the Ecoclimap design in which the LAI is estimated by 

taking the maximum of the envelope of observations on the 1999-2005 period. 

 

 

Figure 3 Zonal average (left) and global seasonal cycle (right) of LAI in Ecoclimap (ctr - blue), modelled by the interactive 
vegetation scheme (ila - red) and in the CGLS LAI (pla - black). 

The interactive vegetation scheme also tends to an overestimation of the LAI although strongly 

reduced compared to ctr. Again, the LAI is overestimated at mid-latitudes of both hemispheres. With 

the interactive vegetation, the overestimation of LAI is reduced in the boreal forests of North America. 

There are persistent overestimations of the LAI in South America and South-East Asia. In the 

Amazonian Forest, the LAI is underestimated when compared to the observations, because leaf 

phenology does not depend on the carbon cycle of the leaves only. It is difficult to evaluate the model 

in this region as a discontinuity has been identified in the observations. 
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Figure 4 Annual bias of LAI for ctr (left) and the interactive vegetation scheme (ila) (right) against the CGLS LAI for the 1993-
2019 period. 

 

Figure 5 Averaged month on the period 1993-2019 when the maximum LAI occurs in ctr (left), with the interactive vegetation 
scheme (middle) and in the observations from D1.1 (right) for the 1993-2019 period. 

In Figure 5 we observe that the month of maximum LAI in ctr is generally the same as in the 

observations even if it is patchier in the observations. With the interactive vegetation, there is a shift 

towards a later maximum of LAI in North America (boreal forest, crops in the USA), Europe (C3 and C4 

crops) and Russia. The delay of the seasonal maximum of LAI is a known flaw of the model already 

documented in Delire et al. (2020) who suggests that it is related to excessive leaf longevity calculated 

by the model.  

It is difficult to draw conclusions about tropical regions as the seasonal cycle is relatively flat in these 
regions and the month of maximum LAI can vary greatly from one year to the next. In the remaining 
of the project we will try to better identify and understand the model limitations by looking at the 
seasonal cycle and its shift by vegetation type 
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3.3.2 Impacts on surface 

In this section, the impacts of the vegetation configuration on the surface latent heat flux are 

evaluated against DOLCE. 

 

Figure 6 Top left: Climatology of latent heat flux in DOLCE in the period 1993-2019. The red boxes correspond to the regions 
used in the next figure. Top right: Zonal average of latent heat flux on the period 1993-2019 in DOLCE (green) and in Surfex 
(blue) in ctr (solid line), with the interactive vegetation scheme (dotted line) and with the prescribed LAI from observations 
(dashed line). Bottom: Bias of latent heat flux in Surfex with the prescribed LAI from observations (left) and with the interactive 
vegetation scheme (right) against DOLCE in the period 1993-2019. 

The latent heat flux from SURFEX is always stronger, whatever the configuration used. The differences 

are the strongest in the tropics (South America, Central Africa, South-East Asia). The differences 

between the configurations of the model are limited, and generally smaller than differences to the 

reference DOLCE. 

However, with a prescribed LAI, the biases on the latent heat flux are reduced in some regions (North 

America, Sahel, Eastern Asia) even if the global patterns are similar. This suggests the biases on the 

latent heat fluxes are not coming from the vegetation modelling only. 
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Figure 7 Seasonal cycle of latent heat flux in DOLCE (green) and in Surfex (blue) with Ecoclimap (solid line), with the interactive 
vegetation scheme (dotted line) and with the prescribed LAI from observations (dashed line) in the period 1993-2019. The 
green shading represents the uncertainties (+/- 1.64 * standard deviation) in the estimation of the latent heat flux in DOLCE. 
Top left is the global average and other regions are defined by the red boxes represented on Figure 6. 

The seasonal cycle of the latent heat flux is evaluated globally and in five regions (Figure 7) for the 

different vegetation configurations against DOLCE. Consistent with the previous results, the latent 

heat flux simulated with SURFEX is always stronger than DOLCE, yet generally within the envelope of 

the observations uncertainties. 

In Europe and in the United States, the peak of latent heat flux occurs a month earlier than in DOLCE. 

In China and the Sahel the seasonal cycle is well correlated with the DOLCE data. The prognostic and 

prescribed LAI generally lead to a smaller latent heat flux than with the climatological vegetation thus 

reducing bias. It is expected as the LAI is smaller in these configurations. 
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Figure 8  Correlation difference of inter-annual anomaly latent heat with respect to DOLCE between Surfex with the interactive 
vegetation scheme and Ecoclimap (left) and with the prescribed LAI from observations and Ecoclimap (right) for the period 
1993-2019. 

The prognostic LAI improves correlation in some regions (South America and Africa tropical forests) 

without deteriorating the results. Results are more mixed with the prescribed LAI which shows very 

limited improvements and even tends to deteriorate results in some regions (Northern Canada, 

eastern Russia). In the tropics, the CGLS LAI shows spurious trends and it is therefore difficult to draw 

conclusions on the impacts of LAI on the latent heat flux in these regions. 

3.3.3 Droughts and interactive vegetation 

The vegetation state can have a significant impact during extreme events and particularly during 

droughts. The impact of the interactive vegetation scheme is evaluated during the European and 

Russian heat waves of 2003 and 2010. 

 

Figure 9 2003 (top) and 2010 (bottom) summer (JJA) anomalies of LAI in the CGLS observations (pla - left) and in Surfex with 
the interactive vegetation scheme (ila - right). The reference period is 1993-2019. 

The anomalies of LAI simulated in 2003 and 2010 with SURFEX are larger than in the CGLS 

observations. However, the locations of the anomalies are correct, particularly in 2010. 
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Figure 10 2003 (top) and 2010 (bottom) summer (JJA) anomalies of 100 cm soil moisture Surfex with Ecoclimap (ctr - left) and 
with the interactive vegetation scheme (ila - middle) and the differences between the two configurations (right). Note the 
different scale for the differences. The reference period is 1993-2019. 

In the cases studied, soil moisture anomalies are lower (less negative) with the interactive vegetation 
than in ctr. It might be related to the stronger LAI anomalies that lead to a smaller evapotranspiration 
and therefore a smaller draining of the soil. The interactive vegetation tends to mitigate the negative 
anomalies of soil moisture. 
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3.4 ECMWF 

The evaluation of the impact of the varying LAI and LULC data on the offline surface simulations is 

performed with two main focuses. The first is to check the model skills with regards to long term mean 

metrics on the surface latent heat flux and surface soil moisture (0-10 cm). The model skill is evaluated 

for representing the three variables after model updates with the land use dataset from ESA-CCI and 

in the inter-annual variability of LAI and cover fraction. The second evaluation focuses on the ability 

of the model to detect extreme events such as droughts when forced with varying vegetation related 

data.  

3.4.1 Long term mean sensitivity and evaluation 

Evapotranspiration from FLUXCOM (Jung et al., 2019) is used as reference observationally based 

dataset for the surface latent heat flux. The machine learning observationally based soil moisture 

product SoMo.ml (O and Orth 2021) is used as the reference dataset to evaluate model surface soil 

moisture (Section 3.4.2). In this long term mean model evaluation, the global land area with a daily 

temporal resolution at 0.5x0.5 degrees spatial resolution is considered. 

For all experiments listed in Table 1 and for the three variables of interest, the model skill is evaluated. 

For the surface latent heat flux, the following model skill metrics are used (Section 3.4.3): bias and      

RMSE. For the surface and deep soil moisture the Pearson correlation is used.  

Surface latent heat flux 

Figure 11 to Figure 14 show the model skill metrics of the surface latent heat flux for the different 

simulation configurations. The comparison against FLUXCOM dataset with the bias and anomaly RMSE 

metrics is depicted. For the control simulation (Figure 11), large biases in the Northern and Southern 

hemisphere during JJA and DJF, respectively (i.e. their respective summer season) are generally seen. 

Specifically, we see a strong positive bias over Northeastern North America and Eurasia. North     

eastern South America shows generally negative biases all year round, especially in JJA. Southern 

Africa shows large positive (negative) bias during DJF (JJA). 

 

Figure 11 Bias in latent heat flux in the CTR simulation 
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In Figure 12 to Figure 14 the differences of the varying vegetation related model configurations 

experiments with regards to the CTR (control) simulation are illustrated. Red (blue) color indicates a 

less (more) accurate surface latent heat flux of the considered model configuration with regards to 

the control experiment based on the FLUXCOM product. While the model shows a slight improvement 

with regards to the FLUXCOM data when using only varying LULC data (PLC) (Figure 12), a pronounced 

deterioration with regards to the control experiment (Figure 13 and Figure 14) is depicted when using 

the time varying LAI (PLA and PLALC experiments). This indicates that time-varying LAI has a stronger 

effect on the modulation of the latent heat flux in ECLand, than time-varying LULC 

 

Figure 12 Relative differences in RMSE in latent heat flux anomalies between PLC and CTR simulations 

 

Figure 13 Relative differences in RMSE in latent heat flux anomalies between PLA and CTR simulations 
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Figure 14 Relative differences in RMSE in latent heat flux anomalies between PLALC and CTR simulations 

Soil Moisture 

Figure 15 to Figure 18 show the model skill metric for the surface soil moisture against SoMo.ml 

products for the different simulation configurations. Figure 15 illustrates the correlation of the control 

simulation surface soil moisture with the SoMo.ml surface soil moisture data for all seasons. The 

strong positive correlation indicates that the model control configuration has already good skill in 

capturing the spatial and seasonal variability of the surface soil moisture. Only the Northernmost 

regions of the Northern hemisphere during DJF and MAM show slightly negative correlation, probably 

due to the model’s difficulties in representing very cold and freezing soil temperatures. 

 

Figure 15 Pearson correlation between SoMo.ml and ECLand surface soil moisture in the CTR simulation 

Figure 16 to Figure 18 show the differences of the correlation with regards to the SoMo.ml data of the 

varying vegetation-related model configurations experiments from the CTR (control) simulation. 

Unlike the surface latent heat flux results, the surface soil moisture from the varying LULC (PLC, Figure 

16) shows regions with better skills (blue color) than the control experiment. These regions are mostly 
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located in the Northern hemisphere, in regions where skill is the lowest in the CTR simulation. When 

introducing the varying LAI (PLA, Figure 17) and (PLALC, Figure 18) model deterioration (red colors) 

appears mainly in dry and arid areas but also in areas characterized by crops and low vegetation. 

Similar to the surface latent heat flux results, the experiments with time varying LAI show larger 

differences with regards to the control experiment (Figure 17 and Figure 18) than the experiment with 

time varying LULC only (Figure 16). 

 

Figure 16 Relative differences in mean correlation of surface soil moisture anomalies between PLC and CTR simulations 

 

Figure 17 Relative differences in mean correlation of surface soil moisture anomalies between PLA and CTR simulations 
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Figure 18 Relative differences in mean correlation of surface soil moisture anomalies between PLALC and CTR simulations 

The above results emphasize the need for a better estimation of the land surface parameters given 

that they were adapted to previous data set  and tuned to improve atmospheric processes and skill 

for operational numerical weather prediction. To note that besides the time varying change for LAI, 

the way these data are disaggregated into high and low vegetation components was also revised 

(D1.1) and this change combined with the new LULC maps has a strong impact on the model climate 

state. 

3.4.2 Extreme cases evaluation 

The vegetation state can have a prominent influence on the global energy, water and carbon cycles, 

up to seasonal and decadal time scales. This has been particularly evident during extreme conditions 

in recent years (e.g. Europe 2018 and 2003 droughts, United State 2011 drought, Russia 2010 heat 

wave, Horn of Africa 2010 drought..). Weather parameters are also sensitive to the land use/land 

cover and vegetation state and particularly to LAI that contribute to the partitioning of the surface 

energy fluxes into latent and sensible fluxes, and the development of planetary boundary conditions 

and clouds.  

The impact of using varying LAI and LULC is evaluated in this section by focusing on extreme events. 

We examine the surface fluxes derived from ECLand offline simulations performed at the global scale 

for the period covering (1993 to 2019). However, the results are focused on 2003 and 2010 because 

they contain an extreme drought event over Europe and a heat wave over Russia.  

Focusing on the 2010 extremes events, during the July 2010 Russian heat waves, the LAI was lower 

than the 10th percentile of the whole 1993–2019 period. In the case of the European 2003 drought, 

the LAI was much lower than the 10th percentile (see following sections and D1.1).  
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Figure 19 Latent Heat flux difference (W/m2) between time varying LAI and LULC  and control simulation (PLALC - CTR) for 
the European drought (April 2003). 

 

Figure 20 Sensible Heat flux difference (W/m2) between time varying LAI and LULC  and control simulation (PLALC - CTL) for 
the European drought (April 2003). 

 

Figure 21 Latent Heat flux bias difference with regards to CLASS data(W/m2) between time varying LAI and LULC  and control 
simulation (PLALC - CTR) for the European drought (April 2003) 
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As a consequence of the observed decrease of LAI over Europe in 2003 and Russia in 2010, a decrease 

in the Latent heat flux (Figure 19) and an increase in the sensible heat flux (Figure 20) resulted from 

the model for both PLA and PLALC configurations (only the PLALC case is shown for illustration). When 

using the inter annual varying vegetation data, the reduction in energy fluxes reached in some areas 

30W/m2, while the model bias with regards to the CLASS observationally based data (Hobeichi et al. 

2020) was reduced by up to 20W/m2. Similar to the results of the long term means evaluation, the 

experiment using only varying LULC (PLC) showed a minor impact on both latent and sensible heat 

fluxes related to a mild increase of the surface albedo (not shown) which induces a decrease in the 

net surface radiation. However, when varying LAI and LULC (PLALC) are combined, the resultant 

anomaly signal of both latent and sensible heat fluxes is mainly driven by the LAI anomaly. 

 

Figure 22 Latent Heat flux difference (W/m2) between time varying LAI and LULC  and control simulation (PLALC - CTR) for 
the Russian heatwave (July 2010). 

 

Figure 23 Sensible Heat flux difference (W/m2) between time varying LAI and LULC and control simulation (PLALC - CTR) for 
the Russian heatwave (July 2010). 
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Figure 24 Latent Heat flux bias difference with regards to CLASS data (W/m2) between time varying LAI and LULC and control 
simulation (PLALC - CTR) for the Russian heatwave case (July 2010) 

For the Russian 2010 heat wave case, similar results are obtained. The energy fluxes difference during 

July 2010 over Russia when using the prescribed varying vegetation data PLALC was up to 18W/m2 

(Figure 22 and Figure 23) and this contributed to reducing the bias by up to 18 W/m2 (Figure 24). 
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3.5 CNR 

3.5.1 Vegetation variability representation 

Inter-annual variability LAI and land cover 

The monthly CGLS LAI represents the inter-annual variations in LAI. The data shows the largest 

anomaly variations in semi-arid regions where vegetation transpiration is water limited (North-East 

Brazil, Pampas and South-East Australia) (Figure 25a) and during summer months when LAI is high 

(Figure 25b and c). Dry and wet years can be distinguished by the data as negative and positive 

anomalies, respectively.  

  

Figure 25 Standard deviation of inter-annual LAI anomaly introduced in the model in 1993-2019 for (a) all months, (b) JJA and 
(c) DJF. 

The standard deviation of LAI inter-annual anomalies over the tropics (-15 < latitude < +15) is on 

average 0.33 for the 1993-2019 period. However, the standard deviation over the tropics for the      

1999-2019 period is 0.22, which is considerably smaller (Figure 26a). Figure 26b shows that there is a 

shift in the LAI between the 1993-1999 and 1999-2019 period over the tropics, in other regions we did 

not find similar effects. This is likely due to limitations of the CDF-matching approach that was used 

for the harmonization of the AVHRR (1993-1999) and CGLS (1999-onwards) data (CONFESS D1-1). As 

LAI strongly controls the model evaporation, interpretation of the modelling results over the tropics 

should be done with care.   

  

Figure 26 (a) Standard deviation of inter-annual LAI anomaly introduced in the model in 1999-2019 for all months and (b) 
timeseries of mean LAI over the tropics (-15 < latitude <+15).   

With the ESA-CCI land cover data, the dominant vegetation types change in only 6% of the HTESSEL 

land grid cells over the period 1993-2019 (Figure 27a, b, c, d). This small effect is partially a 
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consequence of the HTESSEL representation of dominant vegetation type that does not allow for 

mixed vegetation types or representation of subgrid variability. 

 

Figure 27 Model low (TL) (a,b) and high (TH) (c,d) vegetation types for the years 1993 and 2019. Vegetation indices in Table 
1. 

On the other hand, the vegetation fractional coverage changes in many regions with the ESA-CCI land 
cover dataset. Low vegetation replaces high vegetation due to deforestation in for example the 
Amazon (point 1 in Figure 28c, d) and Siberia (point 3 in Figure 28c, d). In arid regions (e.g. central Asia 
and Australia (point 4)) we observe an expansion of low vegetation (Figure 28c), while in the boreal 
forests high vegetation increases (point 2 in Fig. Figure 28d).  

 

Figure 28 Model low (AL) and high (AH) vegetation fractional cover in 1993 (a, b) and difference between 2019 and 1993 AL  
(c) and AH (d). 
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Improved effective vegetation cover parameterization 

Figure 29 shows that the optimized LAI-FCover relation has smaller k than in the control case of k=0.5 

for all vegetation types. The k values for low vegetation types are higher than for high vegetation 

types, except for tundra. The presented data points in Figure 29 cover the entire LAI-range, except for 

the tundra where LAI does not exceed a value of 2. However, the density of data points is not well 

spread, with for example mostly LAI between 0 and 1 for crops and LAI between 5 and 7 for evergreen 

broadleaf forests.  

The effective vegetation cover with the new parameterization reduces RMSE with respect to the 

FCOVER data compared to the k=0.5 model setup (Figure 30). The RMSE reduces the most over the 

boreal and tropical forests in kv compared to k5 for all seasons, with for evergreen needleleaf trees 

an average RMSE reduction from 0.116 to 0.064 and for evergreen broadleaf trees from 0.054 to 

0.032. The differences in regions with predominantly low vegetation are smaller because the fitted k-

value is closer to the original k=0.5 (e.g. crops from 0.061 to 0.054 and short grass from 0.041 to 0.038).  

The RMSE patterns are similar for different seasons (Figure 30b and c), except for high latitudes with 

predominantly low vegetation cover (JJA Canada and North-East Russia). Here tundra and short grass 

vegetation cover are dominant and the JJA RMSE increases from 0.018 in k5 to 0.036 in kv. 

 

Figure 29 (a – j) LAI vs FCover for a subsample (5000) of the selected points (section 3.2.3) for the least squares optimization 
for all vegetation types and the fitted curve. The colors indicate the point density with purple a low density and yellow a high 
density, k-values and RMSE of the fit are given in the legend (k) The new effective cover parameterization for all vegetation 
types together FCover = 1-exp(-k*LAI) 
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Figure 30 (a) RMSE difference of model effective cover (CVL+CVH) vs FCOVER data between K5 and KV for 1999-2019 for (a) 
all months (b) DJF and (c) JJA. The five points are highlighted for timeseries in Figure 32. 

3.5.2 Impacts on surface fluxes 

Vegetation variability 

The effects of the inter-annual varying LAI from CGLS on model surface fluxes are discussed in the 

multi-model evaluation in Section 4.4 - Multi model comparison. 

Figure 31 and Table 4 show the effect of the variability in land cover on model evaporation fluxes in 

four specific points from Figure 28. The variability in land cover by implementing ESA-CCI annual land 

cover data (plalc) results in an increased variability in model evaporation compared to the fixed land 

cover (pla) and a shift in the individual evaporation fluxes (Et: transpiration, Es: soil evaporation and 

Ei: interception evaporation). For the Brazil deforestation case (1) the mean model Et reduces from 

1.808 to 1.700 mm/day and Ei reduces from 0.937 to 0.836 mm/day. This reduction goes together 

with an increase in Es from 0.481 to 0.599 mm/day, because low vegetation has a smaller effective 

vegetation cover fraction than high vegetation and thus a larger bare soil fraction where soil 

evaporation occurs. In the Brazil case (1) the total evaporation reduces, while for the Russia 

deforestation (case 3) E slightly increases due to the relatively large contribution of soil evaporation 

to total evaporation. On the other hand, the increase in high vegetation (Finland (2)) and the 

expansion of low vegetation (Australia (4)) lead to small increases in model, as a result of an increase 

of Et and Ei and a reduction of Es.  

The limited effects of varying land cover on model evaporation are partly caused by the coupling with 

the CGLS LAI. The LAI was disaggregated into high and low LAI based on the ESA-CCI varying land cover 

data (D1-1), so the changes in land cover are partly included in the CGLS LAI which was used in both 

experiments here. 
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Figure 31 Timeseries for the four specific points pointed in the maps in Figure 28 of vegetation cover AH and AL (a, c, e, g) and 
(b, d, f, h) model evaporation with E total evaporation, Et transpiration, Es soil evaporation and Ei interception evaporation 
in pla and plalc. 

Table 4 Mean and standard deviation of model E, Et, Es and Ei fluxes for experiment pla and plalc for the four points from 
Figure 28. All values are in mm/day. 

Point in 
Figure 28 

Experiment Mean E Mean Et Mean Es Mean Ei Std E Std Et Std Es Std Ei 

1 Brazil pla 3.225 1.808 0.481 0.937 1.161 0.536 0.243 0.698 

 plalc 3.146 1.700 0.599 0.846 1.167 0.539 0.303 0.630 

2 Finland pla 0.548 0.105 0.330 0.109 0.761 0.171 0.458 0.153 

 plalc 0.574 0.144 0.309 0.114 0.796 0.238 0.427 0.162 

3 Russia pla 0.584 0.089 0.396 0.059 0.835 0.167 0.608 0.095 
 plalc 0.585 0.081 0.412 0.054 0.843 0.151 0.634 0.088 

4 Australia pla 0.543 0.027 0.503 0.013 0.547 0.028 0.516 0.021 

 plalc 0.544 0.030 0.499 0.014 0.547 0.031 0.513 0.022 
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Effective vegetation cover 

The effective vegetation cover controls the evapotranspiration-flux components (Et, Es and Ei) 

differently. A decrease in effective vegetation cover results in an increase of the bare soil fraction and 

consequently an increase of model Es. With smaller effective high and low vegetation fractions, model 

Et and Ei reduce.  

In Finland (case 2; boreal forest) and Central Africa (case4; tropical forest) the effective vegetation 

fraction consistently reduces and is closer to the FCOVER data (Figure 32a). For these points a clear, 

yet mild, shift in internal evaporation fluxes is observed, with on average Es increasing, Et and Ei 

decreasing (Table 5). Similarly, the variability in Et and Ei decrease with the reduction in model 

effective cover (Table 5).  Although the evaporation partitioning is affected by the new effective cover 

parameterization, the total evaporation (mean and variability) does not considerably change (Figure 

32b; Table 5). The limited effects are partially related to the small difference in parameter k (Figure 

29) compared to the control case (k=0.5). Moreover, we hypothesize that the limited effects on total 

evaporation are controlled by the fixed atmospheric moisture demand in the offline model setup. 

 

Table 5 Mean and standard deviation of model E, Et, Es and Ei fluxes for experiment plalc-k5 and plalc-kv for the five points 
from Figure 30. All values are in mm/day 

Point in Figure 

30Figure 28 

Experiment Mean E Mean Et Mean Es Mean Ei Std E Std Et Std Es Std Ei 

1 Canada k5 0.625 0.080 0.409 0.052 0.777 0.143 0.592 0.088 

 kv 0.626 0.073 0.421 0.047 0.778 0.131 0.610 0.081 

2 Finland k5 0.817 0.326 0.293 0.177 1.019 0.487 0.367 0.230 

 kv 0.816 0.286 0.356 0.158 1.034 0.431 0.451 0.208 

3 France k5 1.923 1.067 0.465 0.392 1.312 0.947 0.270 0.241 

 kv 1.914 1.021 0.516 0.377 1.308 0.914 0.300 0.236 

4 Central Africa k5 3.796 2.367 0.376 1.053 0.373 0.341 0.097 0.396 

 kv 3.771 2.250 0.511 1.010 0.375 0.321 0.122 0.382 

5 Australia k5 0.986 0.211 0.672 0.103 0.554 0.284 0.349 0.102 

 kv 0.986 0.199 0.689 0.098 0.553 0.269 0.355 0.098 
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Figure 32 Timeseries for the 5 specific points pointed in the maps in Figure 30 of CVH+CVL in plalc-k5 and plalc-kv FCOVER 
data (a, c, e, g, i) and model evaporation with E total total evaporation, Et transpiration, Es soil evaporation and Ei 
interception evaporation (b, d, f, h, j). 

Comparison to reference data 

The implementation of CGLS LAI and ESA-CCI land cover together with the vegetation specific effective 

cover parameterization result in a consistent improvement of the anomaly correlation of the top layer 

soil moisture (Figure 33c, d) and mixed improvement and degradation for anomaly correlation of 

evaporation (Figure 33a, b). From the results in the previous two sections we learn that the changes 

observed here are mostly related to the inter-annual variability of LAI and to a lesser extent to the 

changes in land cover and effective cover parameterization. 

Soil moisture and evaporation anomaly correlation consistently improve during dry periods in 

transitional climates, with predominantly low vegetation (crops and short grass) (Figure 33,Figure 27 

and Figure 28). In the Sahel the anomaly correlation of evaporation increases from 0.720 in ctr-K5 to 

0.784 in plalc-kv and anomaly correlation of SM increases from 0.396 to 0.429 during the dry JJA 

season. Similarly, correlation coefficients increase in JJA in Northeast Brazil (E: 0.760 to 0.812; SM: 

0.537 to 0.639), JJA central Asia (E: 0.790 to 0.810; SM: 0.616 to 0.653) and DJF in India (E: 0.787 to 

0.810; SM: 0.566 to 0.667). In these transitional areas the top layer soil moisture and evaporation are 
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coupled because low vegetation has shallow roots and a relatively large bare soil fraction (lower LAI, 

lower effective vegetation cover).  

On the other hand, evaporation in areas with predominantly high vegetation origins mostly from 

deeper soil layers and the bare soil fraction is smaller (higher LAI, higher effective vegetation cover). 

Figure 33 shows that the results for boreal and tropical forests are less consistent. In the boreal forests 

in Eastern Canada the JJA anomaly E correlation reduces from 0.62 to 0.577, while the anomaly SM 

correlation does not significantly change (r=0.335).  

In the tropics we also find a degradation in anomaly evaporation correlation (all seasons), which can 

be related to the LAI inconsistency discussed in Section 4.3.1. In tropical Africa the anomaly      

correlation of evaporation (all months) decreases on average from 0.572 in ctr-k5 to 0.548 in plalc-kv 

for the period 1993-2019. On the other hand, the anomaly correlation is 0.568 for both experiments 

considering the period 1999-2019. Similarly, in the West-Amazon the correlation coefficient degrades 

from 0.426 to 0.395 for 1993-2019 and is constant (0.407) for 1999-2019. 

 

Figure 33 Correlation difference of inter annual anomaly JJA (a) and DJF (b) evaporation with respect to DOLCEv3 and JJA (c) 
and DJF (d) soil moisture with respect to ESA-CCI between plalc-kv and ctr-k5 for 1993-2019. Grey coloring represents non-
significant (10% level) correlation difference and white represents no data available. 
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3.6 Multi model comparison 

Here we evaluate the similarities and differences in model sensitivities in a multi model evaluation. In 

this model comparison we look at the effects of the inter-annual varying LAI on the model evaporation 

and soil moisture, using the following model experiments: MF-ctr, MF-pla, ECMWF-ctr, ECMWF-pla, 

CNR-ctr-kv and CNR-pla-kv (Table 3).  

In this way the individual effect of the inter-annual varying LAI can be evaluated. The ECMWF and CNR 

ctr experiments are using climatological LAI from the novel CGLS LAI. On the other hand, the MF ctr 

experiment uses the ECOCLIMAP LAI and the LAI climatology in ctr and pla is therefore not the same. 

Model effects in MF may be also partly due to the changed climatology. 

3.6.1 Evapotranspiration and soil moisture 

The global and regional latent heat flux seasonal cycles (Figure 34) generally exceed the observational 

data (DOLCEv2) but remain within the observation uncertainty range, except for winter months over 

Europe where models tend to largely overestimate the latent heat flux. The MF model also 

overestimates this flux over the Amazon, and during spring months over the Central US. The seasonal 

cycle shapes are also quite well reproduced by the models, even if the ascending branch is too steep 

over Europe and Central US, and the peak is too early over the US (June instead of July) for all the 

models. 

Although the CNR and ECMWF seasonal cycles are very similar in several regions as well as globally, 

the inter-model spread is much larger than the departure between both configurations of each model. 

However, configurations with inter-annual varying LAI (pla) tend to slightly improve the latent heat 

flux seasonality with respect to DOLCE, especially for MF at the global scale and over China. 
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Figure 34 Seasonal cycle of latent heat flux in DOLCEv2 (grey) and in MF (blue), CNR-KV (red) and ECMWF (green) model in 
control runs (ctr - solid lines), and with the prescribed vegetation (pla - dotted lines) on the period 1993-2019. The grey 
shading represents the uncertainties (+/- 1.64 * the standard deviation) in the estimation of the latent heat flux in DOLCE. 
Top left is the global average and following regions are the red boxes represented in Figure 6.  

The inter-annual variability of the latent heat flux over the same regions is shown in Figure 35. At the 

global scale, for the three models, configurations with inter-annual varying LAI lead to better latent 

heat flux correlation. The improvement is also noticeable over China, for which extreme anomalies 

such as 1999 (extreme low) or 2013 (extreme high) seem to be better captured by models. Over Sahel 

and Europe, characterized by strong and opposite trends, the correlations are high already, and the 

pla simulations do not substantially improve the latent heat flux variability. Correlations are also 

substantially increased over the Central US, but to a lesser extent for the MF model which tends to 

overestimate the amplitude of some of the strongest anomalies. 

The case of the Amazon region is particular. Despite an overall improvement of latent heat flux 

variability in all pla simulations, the anomalies are largely underestimated prior to 1999, for the 3 

models. This underestimation, which does not concern the ctr simulations, is probably related to the 

discontinuity identified in CGLS LAI time series near the equator between 1998 and 1999, and also 

mentioned earlier in this document. 
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Figure 35 Same as Figure 34 for the inter-annual mean. Figures in colors show the correlation coefficient between the 
control experiments and DOLCEv3, figures in brackets show the correlation coefficient between the pla experiments and 
DOLCEv3. 

The global maps of inter-annual anomaly correlation of evaporation with respect to DOLCEv3 (Figure 

36) for ECMWF and CNR models show a general improvement (except for boreal and tropical forests), 

but the effect in ECMWF is larger. On the other hand, the MF model shows different effects with a 

decrease in correlations for MF-pla over Europe, Western North America and South-East Asia. 

Interestingly, in contrast with the correlation effect on evaporation, the effect of the inter-annually 

varying LAI on the correlation of soil moisture with respect to ESA-CCI SM are of opposite sign in 

ECMWF with respect to CNR (Figure 37). These contrasting results are caused by the different effective 

vegetation cover parameterization in the two models. In the ECMWF model setup, the vegetation 

density parameters CVL and CVH come from look up tables and are therefore fixed in time, whereas 

in the CNR model setup the vegetation density CVL and CVH vary in time as an exponential function 

of the LAI.  This difference manifests mostly during dry periods (low LAI) in transition areas between 

wet and dry climates such as the Sahel, North-East Brazil, US Great Plains and Australia.  
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Figure 36 Correlation of detrended inter-annual anomaly evaporation with respect to DOLCEv3 evaporation for the control 
model (a, c, e) and the difference (pla-ctr) (b, d, f) for MF, CNR and ECMWF models for the period 1993-2018. Detrending 
was applied to anomaly evaporation timeseries for each month separately. 
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Figure 37 Correlation of detrended inter-annual anomaly top layer soil moisture with respect to ESA-CCI soil moisture for 
the control model (a, c, e) and the difference (pla-ctr) (b, d, f) for MF, CNR and ECMWF models for the period 1993-2019. 
Detrending was applied to anomaly evaporation timeseries for each month separately. 

Here we zoom into a dry summer (JJA) in South US in 2011 to exemplify the effect of the inter-annually 

varying LAI and the effective vegetation cover parameterization on evaporation and soil moisture 

(Figure 38). In the CNR model, the reduction in LAI results in a reduced effective vegetation cover and 

an increased bare soil fraction. As a consequence, top layer soil evaporation increases and top layer 

soil moisture reduces. A drying of the top layer soil moisture is expected during droughts which is 

shown in Figure 38 in which the CNR-pla model closer matches the ESA-CCI SM than CNR-ctr. This does 

not happen in ECMWF and MF models, where top layer soil moisture slightly increases during a dry 

period. Here top layer drying does not occur because the vegetation density is fixed and as a 

consequence soil evaporation does not change. On the other hand, the slight increase in top layer SM 

can be explained by a reduction in vegetation transpiration from the top layer as a result of the 

reduction in prescribed LAI. For MF a similar parameterization of the vegetation density to the CNR 

model is used only for areas dominated by crops. This possibly explains the improvements in anomaly 

SM correlation in North-West US, Eastern Europe and South-East China. 
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Figure 38 Drought case USA 2011 with (a) LAI JJA anomaly, (b) evaporation standardized anomalies in ctr and pla compared 
to DOLCEv3 and (c) soil moisture standardized anomalies in ctr and pla compared to ESA-CCI SM. Standardization is done 
based on the monthly standard deviations. 
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4 Conclusion 

This report integrates the land cover and vegetation information, from the latest satellite campaigns 

in the frame of Copernicus, in the CHTESSEL (ECMWF), the EC-Earth HTESSEL-LPJGuess (CNR) and the 

ISBA-CTRIP (Météo-France) land surface models used for reanalysis and initialization of the seasonal-

to-decadal prediction systems. The integration of satellite observations leads to a more realistic 

representation of vegetation seasonal and inter-annual variability and of the related interaction with 

the atmosphere. The overall improved realism leads to significant effects on the simulations by the 

LSMs when forced offline by the latest global reanalysis ERA5. The effects on surface fluxes and soil 

moisture content are often, but not always, improving compared with the available observations. 

These mixed results may be partly related to the offline model setup, in which atmospheric boundary 

conditions largely control the model surface fluxes. Moreover, it is possible that the land surface 

parameters used in these LSMs are adapted to the previous static climatological data and to the lack 

of vegetation variability to compensate for errors. It is suggested here that some parameters in LSMs 

may need to be re-adjusted to be now consistent with the improved representation of land cover and 

vegetation variability.  

The inter-annually varying vegetation-LAI effects on surface fluxes and soil moisture content are 

however considerably diverse in the different LSMs, at least in part related with their diversity in the 

parameterization of the biophysical processes. The improvements in model evaporation are 

comparable for CHTESSEL and HTESSEL-LPJGuess, but the results for ISBA-CTRIP are largely different. 

The HTESSEL-LPJGuess LSM displays considerable improvements in the simulation of top layer soil 

moisture content over transition areas between wet and dry climates such as Sahel, Nordeste Brazil, 

US Great plains, India, and Australia.  This is different from the sensitivity in CHTESSEL and ISBA-CTRIP 

that show negative effects of the inter-annually varying LAI over these regions. It is the effective cover 

parameterization implemented in the HTESSEL-LPJGuess that allows for realistic inter-annual variation 

of vegetation density when LAI is prescribed. This is needed in transition areas to properly control the 

partitioning of the different evapotranspiration-flux components (transpiration, interception 

evaporation and soil evaporation) that produce moisture extraction at different depths in the soil.  

The knowledge from the sensitivity analysis in this report is driving the selection of the better solutions 

and configuration to include for the initialization/simulation of the predictions in CONFESS WP3. 
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