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1 Executive Summary

Land Cover and vegetation observations are of paramount importance to properly constrain the land
surface models that are included in current reanalysis and seasonal-to-decadal prediction systems. In
this deliverable, we present the integration of the unprecedented vegetation information, from the
latest satellite campaigns in the frame of Copernicus, into the land surface models (LSMs) used for
reanalysis and initialization of the seasonal to decadal prediction systems. Observational Land Cover
(LC) and Leaf Area Index (LAI) from CONFESS deliverable D1-1 (Boussetta & Balsamo, 2021) are
implemented as boundary conditions for the CHTESSEL (ECMWF), the EC-Earth HTESSEL-LPJGuess
(CNR) and the ISBA-CTRIP (Météo-France) LSMs. Furthermore, a parameterization of the effective
vegetation cover that is constrained using observations of FCover (Fraction of green Vegetation Cover)
is developed and included in the EC-Earth HTESSEL-LPJGuess (CNR). The effects of the improved
representation of vegetation variability from observations on the LSMs has been evaluated in offline
simulations forced by ERA5 atmospheric forcing. The effects on the simulated water and energy fluxes
are first evaluated by comparing the three individual LSMs, as used by the partners involved in WP1,
with available observations. The multi-model comparison of the sensitivities is also evaluated to
account for model differences in configuration and parameterizations. The results and knowledge
from the sensitivity analysis in this deliverable is driving the selection of optimal solutions and
configurations to include in the initialization/simulation of the predictions in CONFESS WP3 and will
further guide future developments in land surface modeling for the next generation of operational
seasonal and multi-annual prediction systems.

D1.2 Improved vegetation variability 5
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2 Introduction

2.1 Background

Vegetation variability at seasonal and inter-annual time scales strongly controls water and energy
balances of the land surface. However, state-of-the-art land surface models (LSMs) included in short-
term climate prediction systems (e.g. MeteoFrance and ECMWF SEAS5) do not account for realistic
land cover (LC) and vegetation boundary conditions and do not include parameterizations able to
interactively model seasonal to inter-annual variations in vegetation density. Specifically, LC does not
change inter-annually in these LSMs, while it is well known to have been changing due to for example
deforestation or vegetation shifts. Similarly, while the climatological seasonal variations in vegetation
density (of which Leaf Area Index, LAI, is a proxy) are described in these LSMs, the inter-annual
variations of LAl due for example to droughts are not represented. Realistic representation of inter-
annual variations in LC and LAl are fundamental to adequately model the signal due to variations in
land surface-atmosphere interactions. New observations and latest-generation vegetation data are
therefore of paramount importance to properly constrain LSMs used for off-line analysis/initialization
and for seasonal-to-decadal predictions done with fully coupled climate models.

2.2 Scope of this deliverable

2.2.1  Objectives of this deliverable

The objective of this deliverable is to integrate the unprecedented vegetation information, from the
latest satellite campaigns in the frame of Copernicus, in the land surface models used for offline
simulation and initialization of the prediction systems.

1.1.1 Work performed in this deliverable

The ‘Vegetation dataset of Land Use/Land Cover and Leaf Area Index” developed in Deliverable 1.1
(from here referred to as D1-1; Boussetta & Balsamo, 2021) is exploited. The work performed in this
deliverable can be summarized as follows:

e Model development
0 Development and technical work to implement boundary conditions from
observational LAl and LC from D1-1.
0 Development of a parameterization of the effective vegetation cover as a function of
LAl that is constrained using FCOVER observations (included in the EC-Earth HTESSEL-
LPJGuess by CNR only).
e Model experiments
0 Offline land-surface model simulations using ERA5 atmospheric forcing and with the
novel LAl and LC boundary conditions for improved representation of land surface-
atmosphere interactions and for the initialization of the seasonal-to-decadal
prediction systems.
0 Offline land-surface model simulations using ERA5 atmospheric forcing and with the
improved parameterization of the effective vegetation cover as a function of LAL.
® Model evaluation

D1.2 Improved vegetation variability 6
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0 The set of offline sensitivity simulations to the improved vegetation inter-annual
variability by each partner are evaluated.

0 In a multi-model comparison, the model sensitivities to the realistic inter-annual
vegetation variability are evaluated.

2.2.2 Deviations and counter measures

No deviations have been encountered.

D1.2 Improved vegetation variability 7
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3 Methodology

3.1 Data description

Here we briefly describe the observational data of LU/LC, LAl and FCOVER that are used to constrain
the modelling in WP1. Details of the development of the LU/LC and LAI data are described in CONFESS
deliverable D1.1.

3.1.1 Land use/land cover data

The ESA-CCI/C3S land cover data was used and processed in D1-1 for application in the modelling
presented in this report. The original 300m land cover classes were aggregated to the target resolution
and converted to the IFS vegetation types using a cross walking table. The LC data was delivered at a
yearly resolution from 1993-2019 by ECMWEF in D1.1.

3.1.2 Leaf Area Index data

The LAl data from CGLS/C3S (SPOT sensor: 1999-2013 and PROBAV-sensor: 2014-2019) was
harmonized with the AVHRR-based data (1993-1999) using a Cumulative Distribution Function (CDF)
matching approach at a 1km resolution, using the methodology described in D1.1. For the ECMWF IFS
and EC-Earth IFS models the LAl is disaggregated into high and low LAl based on the high and low
vegetation fractions from the LC maps. The novel CGLS LAl data was delivered for different resolutions
at a monthly resolution for 1993-2019 by ECMWF in D1.1.

3.1.3  Fraction of green vegetation data

In addition to LC and LAI data we used CGLS data of the Fraction of green Vegetation Cover (FCover),
which describes the fraction of green vegetation per unit ground area. We obtained FCover from CGLS
at a 10-daily temporal and 1km spatial resolution (Verger et al, 2019;
https://land.copernicus.eu/global/products/fcover). We harmonised the 1999-2013 and 2014-2019
periods using CDF matching as described in D1.1 (Figure 1). The homogenized FCover data was used
in combination with LAl and LC for the model development of effective vegetation cover
parameterization (Section 3.2.3).

Global mean FCOVER

-~ FCOVER original
040 FCOVER CDF matching ﬂ {\ [\
| l
| |

- T

0.20

FCOVER (-)

(=]
N
w

2000 2004 2008 2012 2016 2020

Figure 1 Global mean FCover of original data (blue) with SPOT sensor 1999-2013 and PROBA-V sensor 2014-2019, and
homogenized data (orange) after applying CDF-matching to the 2014-2019 period.
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3.2 Model description and developments

Here each partner describes the relevant model parameterization and developments within the
project.

3.2.1 Meteo France model

The land surface model is ISBA-CTRIP (Decharme et al., 2019), embedded in the SURFEX modeling
platform (Voldoire et al., 2017). This model version is the same as that used for CMIP6 simulations.

Description of the reference Land-Cover (ECOCLIMAP)

The land cover properties are specified according to the 1-km resolution ECOCLIMAP-II database
(Faroux et al., 2013). More than 500 land cover units are derived from the Corine Land Cover map for
the year 2000 at 100-m resolution over Europe and from the Global Land Cover 2000 database
elsewhere. Theses land cover units are aggregated to the model resolution into 12 subgrid land tiles
in order to account for land cover heterogeneities, 9 of them corresponding to vegetated land types.

Table 1. ISBA subgrid land types

Tiles Land type

Bare soil & desert

Rock and urban area

Permanent snow and ice
Deciduous broadleaf trees & shrub
Needleleaf trees

Evergreen broadleaf trees

C3 crops

C4 crops

Irrigated crops

Boreal grassland

Ol |N|ao|L]|_|WIN|-

=
o

[EEN
AN

Tropical grassland
Peat bogs

[EEN
N

The grid cell fraction of vegetation is fixed to O for deserts, rock and urban areas as well as permanent
snow and ice, to 0.95 for grasslands, peat bogs and boreal forests and to 1 for tropical evergreen
forests. For crop tiles, this fraction f varies with LAl as in the following equation:

f=1- e 06LAI
The ECOCLIMAP fixed land cover can be used with either a fixed or interactive LAl scheme.
Description of vegetation and carbon assimilation

Vegetation in the ISBA land surface scheme is represented by a maximum of six biomass reservoir of:
leaves, stem/twigs, wood, fine and coarse roots, and a small additional storage pool.

The photosynthesis and associated carbon assimilation depend on the stomatal conductance of leaves
(Jacobs, 1994, Calvet et al, 1998). In ISBA, this conductance is controlled by three factors: the
atmospheric CO2 concentration, the atmospheric vapour pressure deficit (Joetzjer et al. 2015) and soil
moisture availability. Finally, the soil water used for transpiration is removed throughout the root zone
according to a vertical root-density profile.

D1.2 Improved vegetation variability 9
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Description of the fixed LAl scheme (ECOCLIMAP)

The climatological seasonal cycle of the LAl is imposed for each land cover unit at a 10-day time step.
This seasonal-cycle climatology is computed using the collection 5 of the Moderate Resolution Imaging
Spectroradiometer (MODIS) leaf area index product at 1-km spatial resolution combined with the
Normalized Difference Vegetation Index product from the SPOT/Vegetation data set from 1 January
1999 to 31 December 2005.

Description of prescribed inter-annual LAl in CONFESS

The 1km LAl dataset described in section 3.1.2 was upscaled to the TI127 grid by a bilinear
interpolation and was disaggregated into vegetation types by conserving the same proportion of
vegetation types by grid cell, as derived from ECOCLIMAP. Then, the LAl values are updated at each
time step of the simulation with this dataset of interpolated 10-daily LAl values for the different
vegetation types.

Description of the interactive LAl scheme

Leaf biomass is based on the carbon assimilated by photosynthesis and decreased by turnover,
respiration, and allocation to the other pools (Gibelin et al.,2006). Leaf phenology results directly from
the daily carbon balance of the leaves. Finally, LAl is diagnosed from leaf biomass (B) and specific Leaf
area (SLA), which varies as a function of leaf nitrogen concentration and plant functional type:

LAl = B *SLA

The photosynthesis, respiration and carbon allocation schemes are further detailed in Delire et al.
2020.

3.2.2 ECMWF model

Tiled ECMWF Scheme for Surface Exchanges over Land (CHTESSEL, Balsamo et al., 2011, Boussetta et
al.,, 2013). The land surface model version used in CONFESS is based on the 47R3 model cycle
(https://www.ecmwf.int/en/elibrary/20198-ifs-documentation-cy47r3-part-iv-physical-processes).

In the current ECMWEF land surface model (ECLand) and data assimilation system the land use/land
cover (LULC) is processed from the Global Land Cover Characteristics data set (GLCC, Loveland et al.,
2000) and the Leaf Area Index (LAl) is based on a 2000-2008 climatology from the Moderate Resolution
Imaging Spectroradiometer (MODIS) collection 5 (MOD15A2) data. An observation operator that
disaggregates the LAl into a high and low vegetation component is applied to the observed data to
allow using it in the ECLand system. The observed LAl was rescaled using a static LAl dataset to
guarantee neutral impact on the ECMWF model (Boussetta et al., 2013). These crucial input data do
not fully benefit from new developments of vegetation related remote sensing vegetation data.
Recent studies have identified limitations of the current land cover and LAl datasets used in ECLand
(Johannsen et al., 2019) over several regions of the world.

Within CONFESS, the new ESA-CCI LULC and CGLS LAI (CONFESS D1.1) are used within ECLand to assess
the impact of varying vegetation condition on the surface offline system in a first step and in the
coupled system in a second phase within WP3.
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3.2.3 CNR model

Model description

Here we use the Hydrology Tiled ECMWF Scheme for Surface Exchanges over Land (HTESSEL) land
surface model (Balsamo et al., 2009) as it was modified and implemented in the EC-EARTH v3 Earth
system model (DOscher et al., 2021). In HTESSEL the vegetated area of a grid cell is divided into high
and low vegetation tiles, with in case of snow also separate model tiles for snow on bare ground/low
vegetation and snow beneath high vegetation (Balsamo et al., 2009). Each high and low vegetation
tile is described by the vegetation cover fraction and the dominant vegetation type. Originally, these
vegetation parameters were defined by the GLCC land cover dataset (Loveland et al., 2000).

a) ESA-CCI explicit b) HTESSEL dominant vegetation €) HTESSEL time-varying effective
vegetation per grid cell type and cover per grid cell vegetation cover per grid cell
T, 20% =
[
T,
35%

D Dominant low vegetation type

Dominant high vegetation type

Figure 2 Grid cell vegetation description with example numbers. (a) ESA-CCl explicit vegetation fraction (b) HTESSEL dominant
vegetation type and cover, (c) HTESSEL effective vegetation cover with CB bare soil cover, CL and CH low and high effective
cover. Vegetation indices are given in Table 2.

The original HTESSEL model describes a seasonal cycle of LAl derived from a satellite-based
climatology based on MODIS (Boussetta et al., 2013). In the model, the LAl controls the canopy
resistance r. through the following linear relation:

o = S0 £ (ROf (D) f2(0)

With 75 1in the vegetation specific minimum canopy resistance and f; (Rs), f2(Dg), f3(0) functions
describing the dependences on shortwave radiation (R,), atmospheric water vapor deficit (D,) and
soil moisture (8). The vegetation transpiration is linearly related to 7. and other atmospheric variables.

Furthermore, the LAl controls the capacity of the model interception reservoir Wim by:
Wim = Wimax * (Cp + Cy * LAI(Ty) + Cp, * LAI(T,))

With W1max=0.0002m and CB, CH and CL the fractions of bare soil, effective high and low vegetation,
respectively (Section 2.3.3). The interception evaporation per time step follows from the water
content of the interception reservoir (calculated from precipitation), and W1m the potential
evaporation. The model effective high and low vegetation cover (CH and CL) represent the part of the
model vegetation cover (AH and AL) that is actively contributing to the water balance through
transpiration and interception evaporation. The fraction of the grid cell not covered by the effective
vegetation is treated as bare soil (CB) where only soil evaporation takes place. CH, CL and CB are
described by:
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CH:Cv,H'AH
CLZCU,L'AL
CB=1_CH_CL

with CvH and CvL the vegetation density. Originally, CvH and CvL were described by a look-up table
with vegetation specific values, allowing for spatial variation of the CH, CL and CB fractions. However,
this approach does not allow for temporal variations in vegetation density, so the seasonal and inter-
annual variability of vegetation effective cover is not represented. To overcome this limitation, the
vegetation density was linked to the variability of LAl by the following exponential relation (Alessandri
etal.,, 2017):

Cyr =1—exp(—k-LAI)
Cou =1 —exp(=k-LAly)

with k the canopy light extinction coefficient that represents the amount of vegetation clumping
(Anderson, 2005).

Model developments
Implementation of latest generation land cover data

Here we apply the latest generation land cover data from ESA-CCI (Section 3.1.1). For application in
HTESSEL the 300m data was aggregated to the model resolution T255 (~50x50km) and converted to
the 10 vegetation types presented in Table 1 after applying the cross-walking table (D1-1). For each
grid cell we obtain an explicit vegetation cover fraction for each vegetation type (Figure 2a). For some
vegetation types (e.g. Crops and Deciduous broadleaf trees), the maximum explicit vegetation cover
fraction is smaller than 1 because the cross-walking table used assumes that these vegetation types
are always mixed with other vegetation types, and there is never a 100% cover (Table 2). In HTESSEL
the explicit vegetation (Figure 2a) is converted to a dominant high and low vegetation type (TH and
TL) and a total high and low vegetation fractional cover (AH and AL) (see Figure 2a,b for an example
of this conversion).

The changes in TL and TH directly influences the model parameterization, because several model
parameters that control surface water and energy fluxes (vegetation root distribution, minimum
canopy resistance and roughness lengths for momentum and heat) are prescribed by look up tables
based on vegetation type (ECMWF, 2021). Model evaporation is calculated separately for the high and
the low vegetation tiles, and weighted by the CL and CH fractions to obtain total grid cell evaporation.
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Table 2 HTESSEL vegetation types according to the IFS BATS LC classification and the maximum explicit vegetation cover
defined by the cross-walking table.

Vegetation index | High /Low | Vegetation type Maximum fractional cover
1 L Crops, mixed farming 0.90
2 L Short grass 1.00
3 H Evergreen needleleaf trees 0.85
4 H Deciduous needleleaf trees 0.75
5 H Deciduous broadleaf trees 0.70
6 H Evergreen broadleaf trees 0.90
9 L Tundra 1.00
13 L Bogs and marshes 0.75
16 L Evergreen shrubs 0.70
17 L Deciduous shrubs 0.70

Implementation of latest generation LAl data

Here we use the novel CGLS LAl data described in Section 3.1.2 to prescribe a realistic representation
of both seasonal cycle and inter-annual variability of LAI. The 1km LAI data was remapped to the T255
grid by conservative interpolation and was disaggregated into low and high LAI for the use in the
HTESSEL model setup with separate high and low vegetation tiles, based on the high and low
vegetation cover fractions (AL and AH) (D1-1) (Figure 2b).

Improved parameterization of the effective vegetation cover using FCover data

Until now the canopy light extinction coefficient k was set to a constant value of 0.5 (Alessandri et al.,
2017; Krinner et al., 2005) or 0.6 (Nogueira et al., 2020; Boussetta et al., 2021). However, the effect of
vegetation clumping, and so the shape of this relation is different for different vegetation types (Chen
et al., 2005; Chen, 2012; Ryu, 2010). Differently from other works, we estimate vegetation specific k-
values using the satellite data of FCover and LAI (10-daily, 1km grid) together with the ESA-CCI land
cover (yearly, 1km grid), as discussed in Section 3.1.

We assume here that FCover is analogous to the total model vegetation density (CVH+CVL), so the
model-k can be estimated using:

FCover = 1— exp(—k * LAI)

We fitted the CGLS FCover observations with this equation by solving for different values of the k-
parameter for each vegetation type using a non-linear least squares optimization. To differentiate
vegetation types, we selected grid cells with the maximum possible explicit vegetation fraction (Table
1) for each vegetation type, for each year. For these grid cells, the FCover and LAl 10-daily data for
1999-2019 were extracted. To make computational costs affordable while keeping a representative
sample with robust significance of the fitting, we took a randomly selected subsample of grid points
(2000) for each vegetation type of the LAl and FCover timesteps (10-daily). In this way we obtained
for each vegetation type a sample of 2000 gridpoints * 36 timesteps per year * 20 years = 1 440 000
data points. The LAl and FCover values of these data points were combined and the estimate of k was
optimized using a non-linear least squares optimization. To optimally isolate individual vegetation
types, the parameter fitting was done at a 1km resolution using the explicit vegetation fractions from
ESA-CCI and the total LAI. However, in the model the effective vegetation cover is calculated at a
coarser spatial resolution, using disaggregated LAl for the dominant vegetation types.
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3.3 Experiments

Table 3 summarizes the experimental set-up for the three institutes including spatial resolution,
historical period covered, and LAI/LC configurations.

3.3.1 MF experimental setup

Offline simulations with Surfex (ISBA-CTRIP) were carried out at the tI127 resolution on a reduced
Gaussian grid, and driven by hourly surface ERAS fields upscaled at the same horizontal resolution. 4
different simulations were performed: (i) a control run with climatological LAl and the reference fixed
land cover map, (ii) a run with interactive LAl and the reference fixed land cover map, (iii) a run where
LAl evolves interactively and land cover map is updated every year and derived from LUH2 (Hurtt et
al., 2011) version 2.0h, as described in Delire et al. (2020), and (iv) a fourth run where time-varying
1993-2019 CGLS LAl is used while keeping the reference fixed land cover map. All simulations but (iv)
have been carried out for the period 1950-2019.

3.3.2 ECMWF experimental setup

Offline simulations with ECLand were carried out for the period 1993-2019 at the TL639 reduced
Gaussian grid and driven by near-surface meteorological fields from the ECMWF ERA5 reanalysis
having the same spatial resolution (Hersbach et al., 2020). The simulations are performed using 3 main
configurations: (i) a control run with static 2019 ESA-CCI LULC maps and climatological CGLS LAI, (ii))
a second configuration where varying ESA-CCI LULC is used for the 1993-2019 period and LAl is
climatological, (iii) a third configuration where time-varying 1993-2019 CGLS LAl is used while keeping
the 2019 fixed LULC and (iv) a fourth configuration where both time-varying CGLS LAl and time-varying
ESA-CCI LULC are used for the 1993-2019 period.

3.3.3 CNR experimental setup

CNR performed offline simulations with HTESSEL using hourly ERAS5 forcing for 1993-2019, with 1980-
1993 the spin-up period. In the spin-up the LAl was set to climatological values from CGLS 1993-2019
and LC to the values of ESA-CCI 1993. In the control experiment (ctr), the LAl and LC from the spin-up
are also used for 1993-2019. In the LAl sensitivity experiment (pla) we replace the climatological LAl
with the inter-annual varying CGLS LAI, keeping the LC fixed. The fixed LC is replaced by the multi-
annual varying LC from ESA-CCI to evaluate the LC sensitivity (plalc). The model sensitivity to the
updated effective cover parameterization was tested on top of the LAl and LC variability (plalc-kv). We
evaluated the monthly mean output of these experiments.
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Table 3. Details of experimental setup for CNR, MF and ECMWF models.

Institute Experiment Period Spatial LAI configuration Land cover configuration Effective vegetation
resolution cover configuration
CNR ctr-k5 1993-2019 T255 Climatological 1993 LC for 1993-2019 k=0.5
(1993-2019)
ctr-kv 1993-2019 | T255 Climatological 1993 LC for 1993-2019 k vegetation specific
(1993-2019)
pla-k5 1993-2019 | T255 Time varying LAI | 1993 LC for 1993-2019 k=0.5
for 1993-2019
pla-kv 1993-2019 | T255 Time varying LAI | 1993 LC for 1993-2019 k vegetation specific
for 1993-2019
plalc-k5 1993-2019 | T255 Time varying LAl | Time varying LC for 1993- | k=0.5
for 1993-2019 2019
plalc-kv 1993-2019 | T255 Time varying LAl | Time varying LC for 1993- | k vegetation specific
for 1993-2019 2019
MF ctr 1950-2020 | T127 Ecoclimap 2000 LC for 1950-2020
climatology
pla 1982-2019 T127 Time varying LAl 2000 LC for 1950-2020
ila 1950-2020 T127 Dynamic LAI 2000 LC for 1950-2020
ila_plc 1950-2020 | T127 Dynamic LAI Time varying LC for 1950-

2020 (derived from LUH2)

ECMWF ctr 1993-2019 | TL639 Climatological 2019 LC for 1993-2019

(1993-2019)

plc 1993-2019 | TL639 Climatological Time varying LC for 1993-
(1993-2019) 2019

pla 1993-2019 TL639 Time varying LAI | 2019 LC for 1993-2019
for 1993-2019

plalc 1993-2019 | TL639 Time varying LAl | Time varying LC for 1993-
for 1993-2019 2019

3.4 Evaluation Data and Metrics

Here we describe the reference data used to evaluate the different models. We also describe the
evaluation metrics.

3.4.1 Evaporation reference data

The DOLCE (Derived Optimal Linear Combination Evapotranspiration) product combines different
global evaporation datasets with in-situ observational data from Fluxnet towers, providing daily
evaporation at a 0.25-degree spatial resolution for 1980-2018 (Hobeichi et al., 2021). Here we use the
two versions DOLCEv2.1 and DOLCEv3 for evaluation of model evaporation. DOLCEv2.1 is derived from
11 global evaporation datasets and has a smaller bias to flux tower evaporation than DOLCEv3.
Therefore, we use DOLCEv2.1 for climatological analyses. DOLCEv3 is a linear combination of
evaporation from ERA5-land, GLEAM v3.5a and v3.5b and FLUXCOM-RSMETEOQ with weights based on
flux towers (Hobeichi et al., 2021). DOLCE v3 captures evaporation variations well and is therefore
suitable for evaluating the effects of inter-annual varying LAl and LC on model evaporation. In addition,
evapotranspiration from FLUXCOM-RSMETEO (combination of FLUXNET, remote sensing and
meteorological forcing using machine learning algorithm; Jung et al., 2019) and from CLASS (similar
approach to DOLCE but conserving energy balances; Hobeichi et al., 2021) were used as reference
datasets for the surface latent heat flux.
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3.4.2 Soil moisture reference data

ESA-CCl has developed a global satellite-derived soil moisture product (ESA-CCI SM) based on multiple
satellites with active and passive sensors (Dorigo et al., 2017; Gruber et al., 2019). This dataset has a
daily temporal resolution for 1978-2019 and is provided at a 0.25-degree grid. Here we used the
combined active-passive product interpolated to the model spatial resolution, obtained from
https://esa-soilmoisture-cci.org/. The dataset contains spatial and temporal gaps due to densely
vegetated areas (tropical forests) and snow coverage. Here we only use grid cells with a temporal
coverage larger than 60%. The ESA-CCI SM represents the soil moisture in the top soil layer ~0-5 cm.
Here we compare these values to the ECMWF and CNR model first layer soil moisture (7 cm) and the
MF model first two layers soil moisture (4 cm). As the represented depths differ, we standardize the
SM values using the monthly standard deviation in order to consistently compare the models with the
ESA-CCI SM. Another reference data used to evaluate model surface soil moisture (0-10 cm) is the
machine learning observationally based soil moisture product SoMo.ml (O and Orth 2021).

3.4.3 Evaluation metrics

Root Mean Square Error

is computed with the following equation:

V ZZ:l()jt —¥)?

T

RMSE =

where y;and y; are the absolute model and reference values in time t, respectively, and T is the total
considered time steps. For the RMSE of the inter-annual anomalies, the mean seasonal cycles
(computed for the bias metric) is removed from the model and reference datasets respectively to
obtain the anomalies. Then, the RMSE is estimated based on these anomalies.

Pearson correlation
is computed with the following equation:

cov(X,Y)
COTTy, = ————

i 00y
where cov is the covariance, g, and g,, are the standard deviation of X and Y respectively.
Seasonal bias

The mean seasonal cycles (long term mean of every day of the year) for both model and reference
datasets are computed. Then the reference’s mean seasonal cycle is subtracted from the model’s
mean seasonal cycle. Finally, the mean bias for each season (DJF-MAM-JJA-SON) is estimated.
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4 Results

3.3 Meteo France

The prognostic LAl and the interactive vegetation in SURFEX are evaluated against the CGLS LAI. The
impact of the varying LAl on surface latent heat flux is evaluated with offline land surface simulations
driven by the ERA5 atmospheric reanalysis. In a second evaluation, two past droughts in Europe are
analysed to evaluate the model ability to reproduce LAl anomalies during droughts.

3.3.1 Vegetation modelling

The LAI from ctr is always higher than the CGLS observations (Figure 3). The overestimation of LAl is
particularly strong at mid-latitudes in both hemispheres. As shown in Figure 4 in the Northern
Hemisphere, there is a particularly strong overestimation of LAl in the boreal forests of Canada and
Russia. These overestimations are specific to the Ecoclimap design in which the LAl is estimated by
taking the maximum of the envelope of observations on the 1999-2005 period.

Zonal average LAI Seasonal cycle LAl
— ctr — ctr
— la — ila
4! — pla 2.2 — pla
2.01
3.
1.81
2 1.6
1.4
1.
1.21
0
-60 =40 =20 0 20 40 60 80 2 4 6 8 10 12

Figure 3 Zonal average (left) and global seasonal cycle (right) of LAl in Ecoclimap (ctr - blue), modelled by the interactive
vegetation scheme (ila - red) and in the CGLS LAl (pla - black).

The interactive vegetation scheme also tends to an overestimation of the LAl although strongly
reduced compared to ctr. Again, the LAl is overestimated at mid-latitudes of both hemispheres. With
the interactive vegetation, the overestimation of LAl is reduced in the boreal forests of North America.

There are persistent overestimations of the LAl in South America and South-East Asia. In the
Amazonian Forest, the LAl is underestimated when compared to the observations, because leaf
phenology does not depend on the carbon cycle of the leaves only. It is difficult to evaluate the model
in this region as a discontinuity has been identified in the observations.
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LAl bias ctr - pla (1993-2019) - 15

Figure 4 Annual bias of LAl for ctr (left) and the interactive vegetation scheme (ila) (right) against the CGLS LAl for the 1993-
2019 period.
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Figure 5 Averaged month on the period 1993-2019 when the maximum LAl occurs in ctr (left), with the interactive vegetation
scheme (middle) and in the observations from D1.1 (right) for the 1993-2019 period.

In Figure 5 we observe that the month of maximum LAl in ctr is generally the same as in the
observations even if it is patchier in the observations. With the interactive vegetation, there is a shift
towards a later maximum of LAl in North America (boreal forest, crops in the USA), Europe (C3 and C4
crops) and Russia. The delay of the seasonal maximum of LAl is a known flaw of the model already
documented in Delire et al. (2020) who suggests that it is related to excessive leaf longevity calculated
by the model.

It is difficult to draw conclusions about tropical regions as the seasonal cycle is relatively flat in these
regions and the month of maximum LAl can vary greatly from one year to the next. In the remaining
of the project we will try to better identify and understand the model limitations by looking at the
seasonal cycle and its shift by vegetation type
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3.3.2 Impacts on surface

In this section, the impacts of the vegetation configuration on the surface latent heat flux are
evaluated against DOLCE.
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Figure 6 Top left: Climatology of latent heat flux in DOLCE in the period 1993-2019. The red boxes correspond to the regions
used in the next figure. Top right: Zonal average of latent heat flux on the period 1993-2019 in DOLCE (green) and in Surfex
(blue) in ctr (solid line), with the interactive vegetation scheme (dotted line) and with the prescribed LAl from observations
(dashed line). Bottom: Bias of latent heat flux in Surfex with the prescribed LAl from observations (left) and with the interactive
vegetation scheme (right) against DOLCE in the period 1993-2019.

The latent heat flux from SURFEX is always stronger, whatever the configuration used. The differences
are the strongest in the tropics (South America, Central Africa, South-East Asia). The differences
between the configurations of the model are limited, and generally smaller than differences to the
reference DOLCE.

However, with a prescribed LAI, the biases on the latent heat flux are reduced in some regions (North
America, Sahel, Eastern Asia) even if the global patterns are similar. This suggests the biases on the
latent heat fluxes are not coming from the vegetation modelling only.
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Figure 7 Seasonal cycle of latent heat flux in DOLCE (green) and in Surfex (blue) with Ecoclimap (solid line), with the interactive
vegetation scheme (dotted line) and with the prescribed LAl from observations (dashed line) in the period 1993-2019. The
green shading represents the uncertainties (+/- 1.64 * standard deviation) in the estimation of the latent heat flux in DOLCE.
Top left is the global average and other regions are defined by the red boxes represented on Figure 6.

The seasonal cycle of the latent heat flux is evaluated globally and in five regions (Figure 7) for the
different vegetation configurations against DOLCE. Consistent with the previous results, the latent
heat flux simulated with SURFEX is always stronger than DOLCE, yet generally within the envelope of
the observations uncertainties.

In Europe and in the United States, the peak of latent heat flux occurs a month earlier than in DOLCE.
In China and the Sahel the seasonal cycle is well correlated with the DOLCE data. The prognostic and
prescribed LAl generally lead to a smaller latent heat flux than with the climatological vegetation thus
reducing bias. It is expected as the LAl is smaller in these configurations.
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Figure 8 Correlation difference of inter-annual anomaly latent heat with respect to DOLCE between Surfex with the interactive
vegetation scheme and Ecoclimap (left) and with the prescribed LAl from observations and Ecoclimap (right) for the period

1993-20189.

The prognostic LAl improves correlation in some regions (South America and Africa tropical forests)
without deteriorating the results. Results are more mixed with the prescribed LAl which shows very
limited improvements and even tends to deteriorate results in some regions (Northern Canada,
eastern Russia). In the tropics, the CGLS LAl shows spurious trends and it is therefore difficult to draw
conclusions on the impacts of LAl on the latent heat flux in these regions.

3.3.3

Droughts and interactive vegetation

The vegetation state can have a significant impact during extreme events and particularly during
droughts. The impact of the interactive vegetation scheme is evaluated during the European and

Russian heat waves of 2003 and 2010.
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Figure 9 2003 (top) and 2010 (bottom) summer (JJA) anomalies of LAl in the CGLS observations (pla - left) and in Surfex with
the interactive vegetation scheme (ila - right). The reference period is 1993-2019.

The anomalies of LAl simulated in 2003 and 2010 with SURFEX are larger than in the CGLS
observations. However, the locations of the anomalies are correct, particularly in 2010.
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Figure 10 2003 (top) and 2010 (bottom) summer (JJA) anomalies of 100 cm soil moisture Surfex with Ecoclimap (ctr - left) and
with the interactive vegetation scheme (ila - middle) and the differences between the two configurations (right). Note the
different scale for the differences. The reference period is 1993-2019.

In the cases studied, soil moisture anomalies are lower (less negative) with the interactive vegetation
than in ctr. It might be related to the stronger LAl anomalies that lead to a smaller evapotranspiration

and therefore a smaller draining of the soil. The interactive vegetation tends to mitigate the negative
anomalies of soil moisture.
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34 ECMWF

The evaluation of the impact of the varying LAl and LULC data on the offline surface simulations is
performed with two main focuses. The first is to check the model skills with regards to long term mean
metrics on the surface latent heat flux and surface soil moisture (0-10 cm). The model skill is evaluated
for representing the three variables after model updates with the land use dataset from ESA-CCI and
in the inter-annual variability of LAl and cover fraction. The second evaluation focuses on the ability
of the model to detect extreme events such as droughts when forced with varying vegetation related
data.

3.4.1 Longterm mean sensitivity and evaluation

Evapotranspiration from FLUXCOM (Jung et al., 2019) is used as reference observationally based
dataset for the surface latent heat flux. The machine learning observationally based soil moisture
product SoMo.ml (O and Orth 2021) is used as the reference dataset to evaluate model surface soil
moisture (Section 3.4.2). In this long term mean model evaluation, the global land area with a daily
temporal resolution at 0.5x0.5 degrees spatial resolution is considered.

For all experiments listed in Table 1 and for the three variables of interest, the model skill is evaluated.
For the surface latent heat flux, the following model skill metrics are used (Section 3.4.3): bias and
RMSE. For the surface and deep soil moisture the Pearson correlation is used.

Surface latent heat flux

Figure 11 to Figure 14 show the model skill metrics of the surface latent heat flux for the different
simulation configurations. The comparison against FLUXCOM dataset with the bias and anomaly RMSE
metrics is depicted. For the control simulation (Figure 11), large biases in the Northern and Southern
hemisphere during JJA and DJF, respectively (i.e. their respective summer season) are generally seen.
Specifically, we see a strong positive bias over Northeastern North America and Eurasia. North
eastern South America shows generally negative biases all year round, especially in JJA. Southern
Africa shows large positive (negative) bias during DJF (JIA).
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Figure 11 Bias in latent heat flux in the CTR simulation
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In Figure 12 to Figure 14 the differences of the varying vegetation related model configurations
experiments with regards to the CTR (control) simulation are illustrated. Red (blue) color indicates a
less (more) accurate surface latent heat flux of the considered model configuration with regards to
the control experiment based on the FLUXCOM product. While the model shows a slight improvement
with regards to the FLUXCOM data when using only varying LULC data (PLC) (Figure 12), a pronounced
deterioration with regards to the control experiment (Figure 13 and Figure 14) is depicted when using
the time varying LAl (PLA and PLALC experiments). This indicates that time-varying LAl has a stronger
effect on the modulation of the latent heat flux in ECLand, than time-varying LULC

-0.09 ~0.06 -0.03 0.00 0.03 0.06 0.09
Standard error slhf relative differences

Figure 12 Relative differences in RMSE in latent heat flux anomalies between PLC and CTR simulations

T

-0.09 -0.06 -0.03 0.00 0.03 0.06 0.09
Standard error sihf relative differences

Figure 13 Relative differences in RMSE in latent heat flux anomalies between PLA and CTR simulations
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Figure 14 Relative differences in RMSE in latent heat flux anomalies between PLALC and CTR simulations
Soil Moisture

Figure 15 to Figure 18 show the model skill metric for the surface soil moisture against SoMo.ml
products for the different simulation configurations. Figure 15 illustrates the correlation of the control
simulation surface soil moisture with the SoMo.ml surface soil moisture data for all seasons. The
strong positive correlation indicates that the model control configuration has already good skill in
capturing the spatial and seasonal variability of the surface soil moisture. Only the Northernmost
regions of the Northern hemisphere during DJF and MAM show slightly negative correlation, probably
due to the model’s difficulties in representing very cold and freezing soil temperatures.

-0.9 -0.6 -0.3 0.0 0.3 0.6 0.9
Mean correlation surface sm

Figure 15 Pearson correlation between SoMo.ml and ECLand surface soil moisture in the CTR simulation

Figure 16 to Figure 18 show the differences of the correlation with regards to the SoMo.ml data of the
varying vegetation-related model configurations experiments from the CTR (control) simulation.
Unlike the surface latent heat flux results, the surface soil moisture from the varying LULC (PLC, Figure
16) shows regions with better skills (blue color) than the control experiment. These regions are mostly
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located in the Northern hemisphere, in regions where skill is the lowest in the CTR simulation. When
introducing the varying LAl (PLA, Figure 17) and (PLALC, Figure 18) model deterioration (red colors)
appears mainly in dry and arid areas but also in areas characterized by crops and low vegetation.
Similar to the surface latent heat flux results, the experiments with time varying LAl show larger
differences with regards to the control experiment (Figure 17 and Figure 18) than the experiment with
time varying LULC only (Figure 16).

MAM

-0.045 -0.030 -0.015 0.000 0.015 0.030 0.045
Relative differences in mean correlation surface sm

Figure 16 Relative differences in mean correlation of surface soil moisture anomalies between PLC and CTR simulations
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Figure 17 Relative differences in mean correlation of surface soil moisture anomalies between PLA and CTR simulations
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Figure 18 Relative differences in mean correlation of surface soil moisture anomalies between PLALC and CTR simulations

The above results emphasize the need for a better estimation of the land surface parameters given
that they were adapted to previous data set and tuned to improve atmospheric processes and skill
for operational numerical weather prediction. To note that besides the time varying change for LA,
the way these data are disaggregated into high and low vegetation components was also revised
(D1.1) and this change combined with the new LULC maps has a strong impact on the model climate
state.

3.4.2 Extreme cases evaluation

The vegetation state can have a prominent influence on the global energy, water and carbon cycles,
up to seasonal and decadal time scales. This has been particularly evident during extreme conditions
in recent years (e.g. Europe 2018 and 2003 droughts, United State 2011 drought, Russia 2010 heat
wave, Horn of Africa 2010 drought..). Weather parameters are also sensitive to the land use/land
cover and vegetation state and particularly to LAI that contribute to the partitioning of the surface
energy fluxes into latent and sensible fluxes, and the development of planetary boundary conditions
and clouds.

The impact of using varying LAl and LULC is evaluated in this section by focusing on extreme events.
We examine the surface fluxes derived from ECLand offline simulations performed at the global scale
for the period covering (1993 to 2019). However, the results are focused on 2003 and 2010 because
they contain an extreme drought event over Europe and a heat wave over Russia.

Focusing on the 2010 extremes events, during the July 2010 Russian heat waves, the LAl was lower
than the 10th percentile of the whole 1993—-2019 period. In the case of the European 2003 drought,
the LAl was much lower than the 10th percentile (see following sections and D1.1).
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Figure 19 Latent Heat flux difference (W/m2) between time varying LAl and LULC and control simulation (PLALC - CTR) for
the European drought (April 2003).
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Figure 20 Sensible Heat flux difference (W/m2) between time varying LAl and LULC and control simulation (PLALC - CTL) for
the European drought (April 2003).
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Figure 21 Latent Heat flux bias difference with regards to CLASS data(W/m2) between time varying LAl and LULC and control
simulation (PLALC - CTR) for the European drought (April 2003)
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As a consequence of the observed decrease of LAl over Europe in 2003 and Russia in 2010, a decrease
in the Latent heat flux (Figure 19) and an increase in the sensible heat flux (Figure 20) resulted from
the model for both PLA and PLALC configurations (only the PLALC case is shown for illustration). When
using the inter annual varying vegetation data, the reduction in energy fluxes reached in some areas
30W/m2, while the model bias with regards to the CLASS observationally based data (Hobeichi et al.
2020) was reduced by up to 20W/m2. Similar to the results of the long term means evaluation, the
experiment using only varying LULC (PLC) showed a minor impact on both latent and sensible heat
fluxes related to a mild increase of the surface albedo (not shown) which induces a decrease in the
net surface radiation. However, when varying LAl and LULC (PLALC) are combined, the resultant
anomaly signal of both latent and sensible heat fluxes is mainly driven by the LAl anomaly.

-187 -140 -93 -46 -37 -28 -18 -9 -5 5 9 18 28 37 46 93 140 187

Figure 22 Latent Heat flux difference (W/m2) between time varying LAl and LULC and control simulation (PLALC - CTR) for
the Russian heatwave (July 2010).
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Figure 23 Sensible Heat flux difference (W/m2) between time varying LAl and LULC and control simulation (PLALC - CTR) for
the Russian heatwave (July 2010).
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Figure 24 Latent Heat flux bias difference with regards to CLASS data (W/m2) between time varying LAl and LULC and control
simulation (PLALC - CTR) for the Russian heatwave case (July 2010)

For the Russian 2010 heat wave case, similar results are obtained. The energy fluxes difference during
July 2010 over Russia when using the prescribed varying vegetation data PLALC was up to 18W/m2
(Figure 22 and Figure 23) and this contributed to reducing the bias by up to 18 W/m2 (Figure 24).
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3.5 CNR

3.5.1 Vegetation variability representation
Inter-annual variability LAl and land cover

The monthly CGLS LAl represents the inter-annual variations in LAl. The data shows the largest
anomaly variations in semi-arid regions where vegetation transpiration is water limited (North-East
Brazil, Pampas and South-East Australia) (Figure 25a) and during summer months when LAl is high
(Figure 25b and c). Dry and wet years can be distinguished by the data as negative and positive
anomalies, respectively.

Standard deviation of inter-annual LAl anomalies 1993-2019
(a) All months (b) JA
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Standard deviation (-)

Figure 25 Standard deviation of inter-annual LAl anomaly introduced in the model in 1993-2019 for (a) all months, (b) JJA and
(c) DJF.

The standard deviation of LAl inter-annual anomalies over the tropics (-15 < latitude < +15) is on
average 0.33 for the 1993-2019 period. However, the standard deviation over the tropics for the
1999-2019 period is 0.22, which is considerably smaller (Figure 26a). Figure 26b shows that there is a
shift in the LAl between the 1993-1999 and 1999-2019 period over the tropics, in other regions we did
not find similar effects. This is likely due to limitations of the CDF-matching approach that was used
for the harmonization of the AVHRR (1993-1999) and CGLS (1999-onwards) data (CONFESS D1-1). As
LAl strongly controls the model evaporation, interpretation of the modelling results over the tropics
should be done with care.

(a) Standard deviation of inter-annual LAl anomalies 1999-2019 (b) Mean LAl over the tropics (-15 < latitude < +15)
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Figure 26 (a) Standard deviation of inter-annual LAl anomaly introduced in the model in 1999-2019 for all months and (b)
timeseries of mean LAl over the tropics (-15 < latitude <+15).

With the ESA-CCI land cover data, the dominant vegetation types change in only 6% of the HTESSEL
land grid cells over the period 1993-2019 (Figure 27a, b, ¢, d). This small effect is partially a
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consequence of the HTESSEL representation of dominant vegetation type that does not allow for
mixed vegetation types or representation of subgrid variability.

(b) TVL 2019

Figure 27 Model low (TL) (a,b) and high (TH) (c,d) vegetation types for the years 1993 and 2019. Vegetation indices in Table
1.

On the other hand, the vegetation fractional coverage changes in many regions with the ESA-CCI land
cover dataset. Low vegetation replaces high vegetation due to deforestation in for example the
Amazon (point 1 in Figure 28c, d) and Siberia (point 3 in Figure 28c, d). In arid regions (e.g. central Asia
and Australia (point 4)) we observe an expansion of low vegetation (Figure 28c), while in the boreal
forests high vegetation increases (point 2 in Fig. Figure 28d).

(a) AL 1993 (b) AH 1993

0.0 01 0.2 0.3 0.4 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 03 0.4 0.6 0.7 0.8 0.9 1.0

0.5
AH ()
3

0.5
AL(-)

-0.10 -0.08 -0.06 -0.04 -0.02 000 002 004 006 008 0.10 -0.10 -008 -0.06 -0.04 -0.02 000 002 004 006 008 010
AL diff (-) AH diff (-)

Figure 28 Model low (AL) and high (AH) vegetation fractional cover in 1993 (a, b) and difference between 2019 and 1993 AL
(c) and AH (d).
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Improved effective vegetation cover parameterization

Figure 29 shows that the optimized LAI-FCover relation has smaller k than in the control case of k=0.5
for all vegetation types. The k values for low vegetation types are higher than for high vegetation
types, except for tundra. The presented data points in Figure 29 cover the entire LAl-range, except for
the tundra where LAl does not exceed a value of 2. However, the density of data points is not well
spread, with for example mostly LAl between 0 and 1 for crops and LAl between 5 and 7 for evergreen
broadleaf forests.

The effective vegetation cover with the new parameterization reduces RMSE with respect to the
FCOVER data compared to the k=0.5 model setup (Figure 30). The RMSE reduces the most over the
boreal and tropical forests in kv compared to k5 for all seasons, with for evergreen needleleaf trees
an average RMSE reduction from 0.116 to 0.064 and for evergreen broadleaf trees from 0.054 to
0.032. The differences in regions with predominantly low vegetation are smaller because the fitted k-
value is closer to the original k=0.5 (e.g. crops from 0.061 to 0.054 and short grass from 0.041 to 0.038).

The RMSE patterns are similar for different seasons (Figure 30b and c), except for high latitudes with
predominantly low vegetation cover (JJA Canada and North-East Russia). Here tundra and short grass
vegetation cover are dominant and the JJA RMSE increases from 0.018 in k5 to 0.036 in kv.
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Figure 29 (a —j) LAl vs FCover for a subsample (5000) of the selected points (section 3.2.3) for the least squares optimization
for all vegetation types and the fitted curve. The colors indicate the point density with purple a low density and yellow a high
density, k-values and RMSE of the fit are given in the legend (k) The new effective cover parameterization for all vegetation
types together FCover = 1-exp(-k*LAl)

D1.2 Improved vegetation variability 33



CONFESS 2020

(a) All months
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Figure 30 (a) RMSE difference of model effective cover (CVL+CVH) vs FCOVER data between K5 and KV for 1999-2019 for (a)
all months (b) DJF and (c) JIA. The five points are highlighted for timeseries in Figure 32.

3.5.2 Impacts on surface fluxes

Vegetation variability

The effects of the inter-annual varying LAl from CGLS on model surface fluxes are discussed in the
multi-model evaluation in Section 4.4 - Multi model comparison.

Figure 31 and Table 4 show the effect of the variability in land cover on model evaporation fluxes in
four specific points from Figure 28. The variability in land cover by implementing ESA-CCI annual land
cover data (plalc) results in an increased variability in model evaporation compared to the fixed land
cover (pla) and a shift in the individual evaporation fluxes (Et: transpiration, Es: soil evaporation and
Ei: interception evaporation). For the Brazil deforestation case (1) the mean model Et reduces from
1.808 to 1.700 mm/day and Ei reduces from 0.937 to 0.836 mm/day. This reduction goes together
with an increase in Es from 0.481 to 0.599 mm/day, because low vegetation has a smaller effective
vegetation cover fraction than high vegetation and thus a larger bare soil fraction where soil
evaporation occurs. In the Brazil case (1) the total evaporation reduces, while for the Russia
deforestation (case 3) E slightly increases due to the relatively large contribution of soil evaporation
to total evaporation. On the other hand, the increase in high vegetation (Finland (2)) and the
expansion of low vegetation (Australia (4)) lead to small increases in model, as a result of an increase
of Et and Ei and a reduction of Es.

The limited effects of varying land cover on model evaporation are partly caused by the coupling with
the CGLS LAL The LAl was disaggregated into high and low LAl based on the ESA-CCl varying land cover
data (D1-1), so the changes in land cover are partly included in the CGLS LAl which was used in both
experiments here.
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Figure 31 Timeseries for the four specific points pointed in the maps in Figure 28 of vegetation cover AH and AL (a, c, e, g) and
(b, d, f, h) model evaporation with E total evaporation, Et transpiration, Es soil evaporation and Ei interception evaporation

in pla and plalc.

Table 4 Mean and standard deviation of model E, Et, Es and Ei fluxes for experiment pla and plalc for the four points from

Figure 28. All values are in mm/day.

Point in | Experiment | MeanE | Mean Et | MeanEs | MeanEi | StdE Std Et Std Es Std Ei

Figure 28

1 Brazil pla 3.225 1.808 0.481 0.937 1.161 0.536 0.243 0.698
plalc 3.146 1.700 0.599 0.846 1.167 0.539 0.303 0.630

2 Finland pla 0.548 0.105 0.330 0.109 0.761 0.171 0.458 0.153
plalc 0.574 0.144 0.309 0.114 0.796 0.238 0.427 0.162

3 Russia pla 0.584 0.089 0.396 0.059 0.835 0.167 0.608 0.095
plalc 0.585 0.081 0.412 0.054 0.843 0.151 0.634 0.088

4 Australia | pla 0.543 0.027 0.503 0.013 0.547 0.028 0.516 0.021
plalc 0.544 0.030 0.499 0.014 0.547 0.031 0.513 0.022
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Effective vegetation cover

The effective vegetation cover controls the evapotranspiration-flux components (Et, Es and Ei)
differently. A decrease in effective vegetation cover results in an increase of the bare soil fraction and
consequently an increase of model Es. With smaller effective high and low vegetation fractions, model
Et and Ei reduce.

In Finland (case 2; boreal forest) and Central Africa (case4; tropical forest) the effective vegetation
fraction consistently reduces and is closer to the FCOVER data (Figure 32a). For these points a clear,
yet mild, shift in internal evaporation fluxes is observed, with on average Es increasing, Et and Ei
decreasing (Table 5). Similarly, the variability in Et and Ei decrease with the reduction in model
effective cover (Table 5). Although the evaporation partitioning is affected by the new effective cover
parameterization, the total evaporation (mean and variability) does not considerably change (Figure
32b; Table 5). The limited effects are partially related to the small difference in parameter k (Figure
29) compared to the control case (k=0.5). Moreover, we hypothesize that the limited effects on total
evaporation are controlled by the fixed atmospheric moisture demand in the offline model setup.

Table 5 Mean and standard deviation of model E, Et, Es and Ei fluxes for experiment plalc-k5 and plalc-kv for the five points
from Figure 30. All values are in mm/day

Point in Figure | Experiment | MeanE | Mean Et | MeanEs | MeanEi | StdE | Std Et | Std Es | Std Ei
30Figure 28
1 Canada k5 0.625 0.080 0.409 0.052 0.777 | 0.143 | 0.592 | 0.088
kv 0.626 0.073 0.421 0.047 0.778 | 0.131 | 0.610 | 0.081
2 Finland k5 0.817 0.326 0.293 0.177 1.019 | 0.487 | 0.367 | 0.230
kv 0.816 0.286 0.356 0.158 1.034 | 0.431 | 0.451 | 0.208
3 France k5 1.923 1.067 0.465 0.392 1.312 | 0.947 | 0.270 | 0.241
kv 1.914 1.021 0.516 0.377 1.308 | 0.914 | 0.300 | 0.236
4 Central Africa | k5 3.796 2.367 0.376 1.053 0.373 | 0.341 | 0.097 | 0.396
kv 3.771 2.250 0.511 1.010 0.375 | 0.321 | 0.122 | 0.382
5 Australia k5 0.986 0.211 0.672 0.103 0.554 | 0.284 | 0.349 | 0.102
kv 0.986 0.199 0.689 0.098 0.553 | 0.269 | 0.355 | 0.098
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Figure 32 Timeseries for the 5 specific points pointed in the maps in Figure 30 of CVH+CVL in plalc-k5 and plalc-kv FCOVER
data (a, ¢, e, g, i) and model evaporation with E total total evaporation, Et transpiration, Es soil evaporation and Ei
interception evaporation (b, d, f, h, j).

Comparison to reference data

The implementation of CGLS LAl and ESA-CCI land cover together with the vegetation specific effective
cover parameterization result in a consistent improvement of the anomaly correlation of the top layer
soil moisture (Figure 33c, d) and mixed improvement and degradation for anomaly correlation of
evaporation (Figure 33a, b). From the results in the previous two sections we learn that the changes
observed here are mostly related to the inter-annual variability of LAl and to a lesser extent to the
changes in land cover and effective cover parameterization.

Soil moisture and evaporation anomaly correlation consistently improve during dry periods in
transitional climates, with predominantly low vegetation (crops and short grass) (Figure 33,Figure 27
and Figure 28). In the Sahel the anomaly correlation of evaporation increases from 0.720 in ctr-K5 to
0.784 in plalc-kv and anomaly correlation of SM increases from 0.396 to 0.429 during the dry JJA
season. Similarly, correlation coefficients increase in JIA in Northeast Brazil (E: 0.760 to 0.812; SM:
0.537 to 0.639), JJA central Asia (E: 0.790 to 0.810; SM: 0.616 to 0.653) and DJF in India (E: 0.787 to
0.810; SM: 0.566 to 0.667). In these transitional areas the top layer soil moisture and evaporation are
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coupled because low vegetation has shallow roots and a relatively large bare soil fraction (lower LAl,
lower effective vegetation cover).

On the other hand, evaporation in areas with predominantly high vegetation origins mostly from
deeper soil layers and the bare soil fraction is smaller (higher LAI, higher effective vegetation cover).
Figure 33 shows that the results for boreal and tropical forests are less consistent. In the boreal forests
in Eastern Canada the JJA anomaly E correlation reduces from 0.62 to 0.577, while the anomaly SM
correlation does not significantly change (r=0.335).

In the tropics we also find a degradation in anomaly evaporation correlation (all seasons), which can
be related to the LAl inconsistency discussed in Section 4.3.1. In tropical Africa the anomaly
correlation of evaporation (all months) decreases on average from 0.572 in ctr-k5 to 0.548 in plalc-kv
for the period 1993-2019. On the other hand, the anomaly correlation is 0.568 for both experiments
considering the period 1999-2019. Similarly, in the West-Amazon the correlation coefficient degrades
from 0.426 to 0.395 for 1993-2019 and is constant (0.407) for 1999-2019.

(a) Correlation difference inter-annual anomaly E - JJA (b) Correlation difference inter-annual anomaly E - DJF

-0.10 -0.08 -0.06 —-0.04 -0.02 0.00 0.02 0.04 006 008 0.10
r difference plalc-kv - ctr-k5 (-)

Figure 33 Correlation difference of inter annual anomaly JIA (a) and DJF (b) evaporation with respect to DOLCEv3 and JJA (c)
and DJF (d) soil moisture with respect to ESA-CCI between plalc-kv and ctr-k5 for 1993-2019. Grey coloring represents non-
significant (10% level) correlation difference and white represents no data available.
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3.6 Multi model comparison

Here we evaluate the similarities and differences in model sensitivities in a multi model evaluation. In
this model comparison we look at the effects of the inter-annual varying LAl on the model evaporation
and soil moisture, using the following model experiments: MF-ctr, MF-pla, ECMWF-ctr, ECMWF-pla,
CNR-ctr-kv and CNR-pla-kv (Table 3).

In this way the individual effect of the inter-annual varying LAl can be evaluated. The ECMWF and CNR
ctr experiments are using climatological LAl from the novel CGLS LAI. On the other hand, the MF ctr
experiment uses the ECOCLIMAP LAl and the LAI climatology in ctr and pla is therefore not the same.
Model effects in MF may be also partly due to the changed climatology.

3.6.1 Evapotranspiration and soil moisture

The global and regional latent heat flux seasonal cycles (Figure 34) generally exceed the observational
data (DOLCEvV2) but remain within the observation uncertainty range, except for winter months over
Europe where models tend to largely overestimate the latent heat flux. The MF model also
overestimates this flux over the Amazon, and during spring months over the Central US. The seasonal
cycle shapes are also quite well reproduced by the models, even if the ascending branch is too steep
over Europe and Central US, and the peak is too early over the US (June instead of July) for all the
models.

Although the CNR and ECMWF seasonal cycles are very similar in several regions as well as globally,
the inter-model spread is much larger than the departure between both configurations of each model.
However, configurations with inter-annual varying LAI (pla) tend to slightly improve the latent heat
flux seasonality with respect to DOLCE, especially for MF at the global scale and over China.
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Figure 34 Seasonal cycle of latent heat flux in DOLCEv2 (grey) and in MF (blue), CNR-KV (red) and ECMWF (green) model in
control runs (ctr - solid lines), and with the prescribed vegetation (pla - dotted lines) on the period 1993-2019. The grey
shading represents the uncertainties (+/- 1.64 * the standard deviation) in the estimation of the latent heat flux in DOLCE.
Top left is the global average and following regions are the red boxes represented in Figure 6.

The inter-annual variability of the latent heat flux over the same regions is shown in Figure 35. At the
global scale, for the three models, configurations with inter-annual varying LAl lead to better latent
heat flux correlation. The improvement is also noticeable over China, for which extreme anomalies
such as 1999 (extreme low) or 2013 (extreme high) seem to be better captured by models. Over Sahel
and Europe, characterized by strong and opposite trends, the correlations are high already, and the
pla simulations do not substantially improve the latent heat flux variability. Correlations are also
substantially increased over the Central US, but to a lesser extent for the MF model which tends to
overestimate the amplitude of some of the strongest anomalies.

The case of the Amazon region is particular. Despite an overall improvement of latent heat flux
variability in all pla simulations, the anomalies are largely underestimated prior to 1999, for the 3
models. This underestimation, which does not concern the ctr simulations, is probably related to the
discontinuity identified in CGLS LAI time series near the equator between 1998 and 1999, and also
mentioned earlier in this document.
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Figure 35 Same as Figure 34 for the inter-annual mean. Figures in colors show the correlation coefficient between the
control experiments and DOLCEV3, figures in brackets show the correlation coefficient between the pla experiments and
DOLCEv3.

The global maps of inter-annual anomaly correlation of evaporation with respect to DOLCEv3 (Figure
36) for ECMWF and CNR models show a general improvement (except for boreal and tropical forests),
but the effect in ECMWEF is larger. On the other hand, the MF model shows different effects with a
decrease in correlations for MF-pla over Europe, Western North America and South-East Asia.
Interestingly, in contrast with the correlation effect on evaporation, the effect of the inter-annually
varying LAl on the correlation of soil moisture with respect to ESA-CCI SM are of opposite sign in
ECMWEF with respect to CNR (Figure 37). These contrasting results are caused by the different effective
vegetation cover parameterization in the two models. In the ECMWF model setup, the vegetation
density parameters CVL and CVH come from look up tables and are therefore fixed in time, whereas
in the CNR model setup the vegetation density CVL and CVH vary in time as an exponential function
of the LAI. This difference manifests mostly during dry periods (low LAIl) in transition areas between
wet and dry climates such as the Sahel, North-East Brazil, US Great Plains and Australia.
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Figure 36 Correlation of detrended inter-annual anomaly evaporation with respect to DOLCEv3 evaporation for the control
model (a, ¢, e) and the difference (pla-ctr) (b, d, f) for MF, CNR and ECMWF models for the period 1993-2018. Detrending

was applied to anomaly evaporation timeseries for each month separately.
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(a) MF-ctr anomaly SM correlation
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Figure 37 Correlation of detrended inter-annual anomaly top layer soil moisture with respect to ESA-CCI soil moisture for
the control model (a, c, e) and the difference (pla-ctr) (b, d, f) for MF, CNR and ECMWF models for the period 1993-2019.
Detrending was applied to anomaly evaporation timeseries for each month separately.

Here we zoom into a dry summer (JJA) in South US in 2011 to exemplify the effect of the inter-annually
varying LAl and the effective vegetation cover parameterization on evaporation and soil moisture
(Figure 38). In the CNR model, the reduction in LAl results in a reduced effective vegetation cover and
an increased bare soil fraction. As a consequence, top layer soil evaporation increases and top layer
soil moisture reduces. A drying of the top layer soil moisture is expected during droughts which is
shown in Figure 38 in which the CNR-pla model closer matches the ESA-CCI SM than CNR-ctr. This does
not happen in ECMWF and MF models, where top layer soil moisture slightly increases during a dry
period. Here top layer drying does not occur because the vegetation density is fixed and as a
consequence soil evaporation does not change. On the other hand, the slight increase in top layer SM
can be explained by a reduction in vegetation transpiration from the top layer as a result of the
reduction in prescribed LAI. For MF a similar parameterization of the vegetation density to the CNR
model is used only for areas dominated by crops. This possibly explains the improvements in anomaly
SM correlation in North-West US, Eastern Europe and South-East China.
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Figure 38 Drought case USA 2011 with (a) LAl JJA anomaly, (b) evaporation standardized anomalies in ctr and pla compared
to DOLCEv3 and (c) soil moisture standardized anomalies in ctr and pla compared to ESA-CCI SM. Standardization is done
based on the monthly standard deviations.
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4 Conclusion

This report integrates the land cover and vegetation information, from the latest satellite campaigns
in the frame of Copernicus, in the CHTESSEL (ECMWF), the EC-Earth HTESSEL-LPJGuess (CNR) and the
ISBA-CTRIP (Météo-France) land surface models used for reanalysis and initialization of the seasonal-
to-decadal prediction systems. The integration of satellite observations leads to a more realistic
representation of vegetation seasonal and inter-annual variability and of the related interaction with
the atmosphere. The overall improved realism leads to significant effects on the simulations by the
LSMs when forced offline by the latest global reanalysis ERA5. The effects on surface fluxes and soil
moisture content are often, but not always, improving compared with the available observations.
These mixed results may be partly related to the offline model setup, in which atmospheric boundary
conditions largely control the model surface fluxes. Moreover, it is possible that the land surface
parameters used in these LSMs are adapted to the previous static climatological data and to the lack
of vegetation variability to compensate for errors. It is suggested here that some parameters in LSMs
may need to be re-adjusted to be now consistent with the improved representation of land cover and
vegetation variability.

The inter-annually varying vegetation-LAl effects on surface fluxes and soil moisture content are
however considerably diverse in the different LSMs, at least in part related with their diversity in the
parameterization of the biophysical processes. The improvements in model evaporation are
comparable for CHTESSEL and HTESSEL-LPJGuess, but the results for ISBA-CTRIP are largely different.
The HTESSEL-LPJGuess LSM displays considerable improvements in the simulation of top layer soil
moisture content over transition areas between wet and dry climates such as Sahel, Nordeste Brazil,
US Great plains, India, and Australia. This is different from the sensitivity in CHTESSEL and ISBA-CTRIP
that show negative effects of the inter-annually varying LAl over these regions. It is the effective cover
parameterization implemented in the HTESSEL-LPJGuess that allows for realistic inter-annual variation
of vegetation density when LAl is prescribed. This is needed in transition areas to properly control the
partitioning of the different evapotranspiration-flux components (transpiration, interception
evaporation and soil evaporation) that produce moisture extraction at different depths in the soil.
The knowledge from the sensitivity analysis in this report is driving the selection of the better solutions
and configuration to include for the initialization/simulation of the predictions in CONFESS WP3.
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