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requirements to be qualified as FCRs were excluded from the analysis and appear colored in white.

Figure 4: Histograms and time series for an example of processed predictors and predictands. The
left column represents the standardised monthly time series of the TNA climate index at the top, and
the biomass burning emissions at the FCR with id number 50 at the bottom. The right column shows
a histogram of all the monthly values for the corresponding time series.

Figure 5: Calibration scores for the basic multivariate linear regression model using only Cls (lagged
by 1 to 12 months) as predictors. Results are shown separately for winter (DJF; top left panel), spring
(MAM; top right panel), summer (JJA; bottom left panel) and autumn (SON; bottom right panel). In
all cases, the scores are averaged for the 6 different holdouts.

Figure 6: The same as in Figure 5 but for the test scores.

Figure 7: Calibration scores in winter (DJF; left) and summer (JJA; right) for multivariate linear
regression model with LASSO regularization using only Cls (lagged by 1 to 12 months) as predictors.
In all cases, the scores are averaged for the 6 different holdouts.

Figure 8: Test scores in winter (DJF; left) and summer (JJA; right) for multivariate linear regression

model with LASSO regularization using only Cls (lagged by 1 to 12 months) as predictors. In all cases,
the scores are averaged for the 6 different holdouts.
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Cls (lagged by 1 to 12 months) and 1-month lagged emissions as predictors. In all cases, the scores
are averaged for the 6 different holdouts.

Figure 12: Test scores for multivariate linear regression model with LASSO regularization using Cls
(lagged by 1 to 12 months) and 1-month lagged emissions as predictors. In all cases, the scores are
averaged for the 6 different holdouts.

Figure 13: Calibration scores for multivariate linear regression model with LASSO regularization using
Cls (lagged by 4 to 12 months) and 4-month lagged emissions as predictors. In all cases, the scores
are averaged for the 6 different holdouts.

Figure 14: Test scores for multivariate linear regression model with LASSO regularization using Cls
(lagged by 4 to 12 months) and 4-month lagged emissions as predictors. In all cases, the scores are
averaged for the 6 different holdouts.

Figure 15: Calibration scores for Random Forest regression model using Cls (lagged by 1 to 12
months) and 1-month lagged emissions as predictors. In all cases, the scores are averaged for the 6
different holdouts.

Figure 16: Test scores for Random Forest regression model using Cls (lagged by 1 to 12 months) and
1-month lagged emissions as predictors. In all cases, the scores are averaged for the 6 different
holdouts.

Figure 17: Calibration scores for Random Forest regression model using Cls (lagged by 4 to 12
months) and 4-month lagged emissions as predictors. In all cases, the scores are averaged for the 6
different holdouts.

Figure 18: Test scores for Random Forest regression model using Cls (lagged by 4 to 12 months) and
4-month lagged emissions as predictors. In all cases, the scores are averaged for the 6 different
holdouts.

Figure 19: Calibration scores for Random Forest regression model (opt. parameters) using Cls (lagged

by 1 to 12 months) and 1-month lagged emissions as predictors. In all cases, the scores are
averaged for the 6 different holdouts.
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Figure 20: Test scores for Random Forest regression model (opt. parameters) using Cls (lagged by 1 to
12 months) and 1-month lagged emissions as predictors. In all cases, the scores are averaged for the
6 different holdouts.

Figure 21: Calibration scores for Random Forest regression model (opt. parameters) using Cls (lagged
by 4 to 12 months) and 4-month lagged emissions as predictors. In all cases, the scores are averaged
for the 6 different holdouts.

Figure 22: Test scores for Random Forest regression model (opt. parameters) using Cls (lagged by 4 to
12 months) and 4-month lagged emissions as predictors. In all cases, the scores are averaged for the
6 different holdouts.

Figure 23: Predictor importance, represented as the absolute value of the regression coefficients (for
the linear regression with LASSO regularisation; left) or the feature importance (for the optimised
Random Forest regression; right) for each predictor, considering the lag for which it is maximum. All
values are derived for the regressions using Cls (lagged by 1 to 12 months) and 1-month lagged
emissions as predictors.
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Table 1: List of Climate indices

Table 2: Global average of scores and percentage of FCR for which the model outperforms the
climatology benchmark in each regression method performed. Prior to computing the global
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1 Executive Summary

This deliverable covers the different steps that were performed to develop an empirical model for
predicting biomass emissions at the regional level, conceived to pave the way to the future
implementation of a capability that can anticipate the occurrence of large biomass burning events
and thus allow their inclusion in operational forecasts.

The model has been built using biomass burning emissions from the Global Fire Assimilation System
(GFAS), which were aggregated over Fire Cohesive Regions (FCRs), and several well known climate
and meteorological predictors. The potential predictive role of other local features, like the land
cover type or the occurrence of previous burning emission events has also been considered.
Different linear and non-linear regression methods have been tested in cross-validation mode and
optimised to minimise overfitting. Several combinations of predictors, and forecast horizons have
been considered, as well.

The best performing model overall is a multivariate linear regression with LASSO regularisation that
includes climate indices and lagged emissions as predictors, which outperforms the climatology
benchmark in more than half of the FCRs when predicting emissions 1-month in advance, and in
more than a third of the FCRs when predicting emissions 4-months in advance. From all the
predictors considered, the preceding emissions are the ones showing, by far, the largest predictive
power worldwide.

A final account of the main lessons learned throughout this study, and a list of follow-up ideas for
further improving the empirical model are provided at the end of the deliverable.

D2.2 Report on the definition and performance of an empirical model for biomass burning emissions
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2 Introduction

2.1 Background

One of the main scientific goals of WP2 is to further our understanding on the predictive role that
biomass burning emissions play on the climate system. The ultimate ambition is to build capabilities
that can leverage their predictive capacity upon the climate and pave the way for their integration in
the operational systems of the European Centre for Medium-Range Weather Forecasts (ECMWF).

All the activities building towards the fulfilment of these ambitious goals are performed in Task 2.2 of
CONFESS. These involve the creation of an updated climatology with the latest observed biomass
burning emissions, introducing a new feature in the ECMWF seasonal prediction system to use
time-varying observed emissions throughout the forecasts, as well as performing two different sets
of retrospective seasonal predictions to test the sensitivity of the forecasts to the emissions
employed (climatological vs time-varying), paying particular attention to selected case studies of the
most recent wildfire events. In real-time forecasts, since the evolution of biomass burning emissions
is in essence unknown once the new forecast is launched, a climatology is generally applied.
However, if we were able to anticipate, to some extent, how biomass burning emissions would
evolve several months in advance, then operational predictions could, at least, partly benefit from
their predictive capacity. Several recent studies point to a potential preconditioning role of different
climate drivers on the occurrence of wildfires (Chen et al. 2011, 2016, 2020; Fernandes et al., 2011;
Coscarelli et al. 2021), opening the door to their predictability, and in turn, the predictability of the
associated biomass burning emissions. The last activity contemplated in Task 2.2 is therefore to build
an empirical model to directly predict the monthly changes in biomass burning emissions, and to
benchmark it against a climatology of emissions (i.e. the data currently used operationally).

2.1.1 Objectives of this deliverable

1) To build an empirical predictive model of biomass burning emissions that can clearly
outperform the benchmark climatology forecast

2) To test different empirical models and methodological choices to explore their relative
weaknesses and strengths

3) To investigate the predictive role of different types of predictors, both at the global and the
regional level

2.1.2 Work performed in this deliverable

This deliverable documents all the different steps and methodological decisions undertaken to
develop the empirical model (section 3), presents the major results with a particular focus on the
aspects in which the model outperforms the climatology (section 4) and concludes with the main
lessons learned and a list of ideas to further improve the model (section 5).
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2.1.3 Deviations and countermeasures

This work was started by Egor Tiavlovsky, who developed the methodological framework, but left the
BSC before completing the analyses. The work was resumed a few months later by Alejandro
Jiménez, who finished the analyses and has led the writing of the deliverable. Because of the
associated delays, the deadline of the deliverable was postponed with the approval of the project
officer from the 30th of April 2022 to the 31st of October 2022.
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3 Methodology

Generally, empirical models based on regression methods aim to estimate a relationship between
the predictand (also known as dependent variable) and a series of variables that are deemed to have
predictive skill over the predictand.

In this particular case, the predictands are biomass burning emissions from different geographical
areas, taken from the Global Fire Assimilation System (GFAS) and then preprocessed to represent
monthly deviations from climatology inside the Fire Cohesive Regions defined by Chen et al. (2020),
as explained below in section 3.2.

Different combinations of predictors have been considered. In all cases we include a selection of
Climate Indices (Cl), which contain ten different oceanic indices and the North Atlantic Oscillation
(NAO) index. Land cover data has been considered for some cases, as well as lagged values of the
predictand. Their selection is justified in section 3.3.

3.1 Regression models applied

A handful of regression models of increasing complexity have been tested in an attempt to optimise
the prediction skill achievable using the available predictors: namely, a multivariate linear regression,
a multivariate linear regression with a LASSO regularization, and a Random Forest regression. The
models have been implemented using the scikit-learn package (Pedregosa, 2011).

3.1.1 Multivariate linear regression

First, a simple multivariate linear regression was tested. In a linear type of regression, the predictand
is considered as a linear function of the p predictors (x,,...,x,), in which each predictor is multiplied
by a linear coefficient (w;,...,w,). An intercept coefficient is also included (w,). The predicted y is thus
determined by the equation:

J(w, ) = wy + w1 +. .. tw,,

The objective is to get the most accurate Y possible, so the model is trained to find the coefficients
that minimize the residual sum of squares between observed predictand (y) and its prediction by the
regression model y. This is done with the cost function:

min || Xw — y||2
w

where y is the observed data vector for the predictand, X is the matrix of independent variables, and
w is the vector of coefficients.

For this model to work properly, there should be a previous careful selection of the independent
variables. If not, problems can arise if there is collinearity between predictors. When this happens,
simple linear models can become too sensitive to outliers or errors, obtaining very different
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parameters each time they are trained. It is said that the model has a high variance when this
happens.

Additionally, without a proper selection of predictors to ensure that they are physically sound, an
overfitting problem can occur. Overfitting happens when the model is fitted so closely to the training
data that it affects its generalisation to make predictions with holdout data, leading to poor skill
values when applied to independent testing datasets. The chances of overfitting will increase in
situations in which there is a lack of training samples to properly capture the full mechanism,
predictors chosen for the regression have collinearity between them, or some predictors do not have
real predictive capacity over the predictand.

3.1.2 Lasso regression

For this project, a considerably large list of predictors was available. Some of them are oceanic
indices from several parts of the globe, which are known to have covariance between each other. To
solve the multicollinearity that causes problems in linear regressions, some methods exist to reduce
the possible variance of the model. One of them is adding a LASSO (Least Absolute Shrinkage and
Selection Operator) regularization to the multivariate linear regression. The LASSO penalty works by
adding an extra term to the cost function of the linear regression method:

. 1
min ——— || Xw — (|5 + of [w||,
w nsamples

In our study, the regularization coefficient (alpha) is chosen with a 5-fold cross-validation.

The objective of this method is to ensure the selection of a reduced subset that only includes
relevant lagged predictors. To this end the regularization method gives very little or zero weights to
the predictors that do not show any covariance with the predictand. By choosing the “best”
predictors for the regression (Friedman et al., 2010), the LASSO method aims to solve the variance
and overfitting problems that usually arise in linear regression methods.

3.1.3 Random Forest

As an additional method to compare with the former two, a Random Forest regression has been
trained with the same predictors. This non-linear regression method combines the predictions of
several decision trees (weaker estimators) to enhance the robustness of the model.

Each decision tree is created gradually, making decisions step by step with a set of if-then-else
decision rules. The random forest regression uses an ensemble of decision trees in which each tree is
built from a bootstrap sample (smaller samples drawn with replacement), and averages the results of
all the trees to achieve a more accurate and stable prediction (see schematic in Figure 1), which also
helps reducing the total variance of the model (Breiman, 2001).

D2.2 Report on the definition and performance of an empirical model for biomass burning emissions
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Figure 1: Schematic from a random forest regression (Figure from Uyanik et al 2022)

3.2 Spatial aggregation of burned emission data (predictand pre-processing)

Global monthly time series of GFAS fire emissions data from 2003 to 2020 at a 0.25°x0.25° resolution
had been initially considered as our predictand. This dataset, however, came with a problem: the
ubiquity of zeros (months without fires) in time series. To deal with this, we use emissions that have
been first re-gridded at a 1°x1° resolution, and spatially aggregated data over Fire Cohesive Regions
or FCRs. These regions are defined to ensure that their associated fire emission time series are
suitable for the application of linear regression methods, and were kindly shared with us by the
producers (Chen et al., 2020).

The size of an FCR can vary, with the options being 1°x1°, 2°x2°, 4°x4° and 8°x8°. Following the
criteria in Chen et al. (2020) a 1°x1° grid cell is defined as an individual FCR if:

1. Total fire emissions on the area are equal or above a minimum threshold of 1.33 Tg C/yr.

2. More than 90% of the years of the time series contain non-zero emissions.

3. The coefficient of variation of the timeseries (i.e. the ratio of standard deviation to the mean)
is less than 2, so that the variability is not controlled by sparse (and anomalously large) data
samples.

If a region does not fulfil the three points, the fire emissions of neighbouring grid points that did not
satisfy the criteria are aggregated to consider a 2°x2° FCR, and the same above conditions are
checked. The process continues until the 8°x8° FCRs are defined. The remaining areas that failed to
meet the three criteria (mostly located in deserts and polar regions), were assumed to be fire-free
and excluded from the forecasts. Resulting FCRs are then subdivided with the borders of different
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countries, to reflect potentially important differences across countries in terms of fire management
policies and resources.

3.3 Predictor selection

3.3.1 Climate Indices (Cls)

Lagged monthly ocean climate indices have been proven to have significant predictive skill for past
fire emissions in several FCRs (Chen et al., 2016). For this reason, an updated selection of the major
ocean Cl time series considered in Chen et al. (2016) has been considered for our regression models.
In addition, an atmospheric index, the North Atlantic Oscillation (NAO), has been added to the list, as
it is known to influence European precipitation, which could potentially precondition several months
before the local risk of wildfires. We have considered their predictive value on fire emissions 1 to 12
months ahead. The final list of observed Climate Indices considered, including the NAO index, is
shown in Table 1. They are all obtained either from the WMO website
(https://climexp.knmi.nl/selectindex) or the NOAA website (Climate Indices: Monthly Atmospheric

and Ocean Time Series: NOAA Physical Sciences Laboratory).

Table 1: List of Climate indices

Tropical North Atlantic HadISSTv1 Mean sea surface temperature anomaly

(TNA) (SSTA) in the box 15°W - 57.5°W, 5.5°N -
23.5°N, climatology: 1971-2000

Tropical South Atlantic HadISSTv1 Mean SSTA in the box 10°E - 30°W, 20°S -

(TSA) 0, climatology: 1971-2000

South Western Indian Ocean HadISSTvl Mean SSTA in the box 31°E - 45°E, 32°S -

(SW10) 25°S, climatology: 1971-2000

NINO 1.2 HadISSTv1 Mean SSTA in the box 90°W - 80°W, 5°S -
5°N, climatology: 1971-2000

NINO 4 HadISSTv1 Mean SSTA in the box 160°E - 150°W, 5°S -
5°N, climatology: 1971-2000

NINO 3 HadISSTv1 Mean SSTA in the box 150°W - 90°W, 5°S -
5°N, climatology: 1971-2000

Pacific Decadal Oscillation 1900-81: UKMO SST Leading EOF of mean November through

(PDO) 1982-2001: OIv1SST March SSTA in the box 100°E-70°W, 0- 20°N

2002-present: OIv2SST

Western Tropical Indian Ocean HadISSTvl Mean SSTA in the box 50°W - 70°W, -10°S -

(WTIO) 10°N, climatology: 1971-2000

SouthEast Indian Ocean HadISSTv1 Mean SSTA in the box 90°W - 110°W, -10°S

(SEIO) - 0, climatology: 1971-2000

Atlantic Multidecadal Oscillation = HadISSTv1 SST 0-60°N, 0-80°W minus SST 60°S-60°N,

(AMO) climatology: 1971-2000

North Atlantic Oscillation NCEP/NCAR CDAS First Empirical Orthogonal Function (EOF)

(NAO) of North Atlantic Sea Level Pressure

D2.2 Report on the definition and performance of an empirical model for biomass burning emissions
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The data of these indices has been obtained from 2002 to 2020. A matrix of values for these indices
has been created for a 2003-2020 monthly timeline. For each Cl, 12 column vectors have been
created. Each vector represents the value of the given index for lags from 1 to 12 months.

3.3.2 Preconditioning role of land surface

The local risk of wildfires (and subsequent emissions) can be largely preconditioned by the local land
cover type. For that reason, we have considered the inclusion of global timeseries of land cover data
as a complementary predictive source to the Cl indices. Gridded land cover classification maps from
2002 to present from the Copernicus database were used to this end. The data have been regridded
to a 1°x1° resolution and then aggregated to match the FCRs. For each region, land cover data has
been encoded as a multidimensional vector representing the fraction of gridpoint belonging to each
of the various land cover categories. The vector is then appended to the rest of predictors for each
FCR. There are originally 30 different categories of land cover class defined, based on the UN Land
Cover Classification System (LCCS). The global spatial distribution of land cover types is illustrated in
Figure 2 for an example year (2008).
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Figure 2: Spatial distribution of land cover data for the year 2008

3.3.3 Predictive potential of biomass burning emissions

Biomass burning emissions themselves also have some predictive potential on the future emissions,
as evidenced by the autocorrelation maps in Figure 3 for 1 month and 4 month lags. The
autocorrelation values at lag 1 (which illustrate the predictive potential of emissions one month
ahead) are positive everywhere, with values that in many regions (like South America or Central
Africa) reach well over, e.g., 0.5. Autocorrelation at lag 4 (illustrating predictive potential 4 months
ahead) tends to be smaller in magnitude, but also important in regions where large emissions occur
like central and south Africa, showing negative values that can locally surpass the -0.4 threshold.
These negative correlations could be explained by the fact that several months after important
biomass burning events occur, the amount of fuel available for subsequent events gets substantially
reduced.
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Autocorrelation at lag 1 0.9 Autocorrelation at lag 4 0.9

Figure 3: Temporal autocorrelation of biomass burning emissions per FCR based on de-seasonalised monthly means (at lag 1
on the left, and lag 4 on the right). The regions that did not meet the requirements to be qualified as FCRs were excluded
from the analysis and appear colored in white.

3.4 Other methodological aspects

Due to the short span of fire emissions observations, which only cover 18 years, the regressions are
built on monthly data, to thus have a longer sample to train and test the models. This implies that to
be able to fully benefit from the temporal sample of independent 216 months, the models need to
be trained with regression coefficients that are the same throughout the year (i.e. seasonally
independent) for each predictor. This thus comes at the expense of diluting the predictive potential
of predictors that have a marked seasonality (e.g. the NAO), a problem that is largely compensated
by the much longer sample to train the model, which is critical to identify meaningful predictive
relationships.

We removed the annual cycle that is present in monthly data due to seasonal variations, which
would provide trivial predictability, and computed standardized anomalies for all predictors and
emissions data, to in this way build our regression models with non-dimensional metrics. For
consistency, the Cl predictors that were directly provided as monthly anomalies have been
de-seasonalized again to have anomalies defined with respect to the years for which emissions data
are available. The model is trained with these pre-processed predictors, thus constructed on the
anomaly space.

D2.2 Report on the definition and performance of an empirical model for biomass burning emissions
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Figure 4: Histograms and time series for an example of processed predictors and predictands. The left column represents the
standardised monthly time series of the TNA climate index at the top, and the biomass burning emissions at the FCR with id
number 50 at the bottom. The right column shows a histogram of all the monthly values for the corresponding time series.

By construction, the time series of the resultant pre-processed predictors show deviations from the
climatological seasonal cycle, which have identifiable intra-annual and also interannual variations, as
illustrated in the left column of Figure 4 for one example predictor, in this case the TNA. Similar
features are also seen in the pre-processed predictand for a given FCR (Figure 4, left column, second
row). Histograms of the final processed feature predictors and predictand (examples in the right
column of Figure 4) show distributions that can be roughly approximated by gaussian functions, and
are therefore suitable for the application of linear regression techniques.

3.5 Evaluation of the predictive model

3.5.1 Evaluation metrics

By working in anomaly space, the model has been trained to estimate the deviations of fire
emissions from their monthly climatology. So in absence of any significant predictive skill, the model
could default to climatology. To evaluate the added value of our regression models, we compare with
a simple model that assumes the climatological value, using a score that measures the differences
between mean squared errors (MSE) of both models:
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score = MSE(Y g, Y) - MSE(Y,.Y)

where ?,eg is the prediction from the regression model, Y is the observed variable to predict, and

~

Y. is a prediction that assumes no deviation from the climatological value.

The first term at the right-hand side of the equality represents the error committed by the
climatology values. The second term is the error committed by the regression model. So, by
construction, a positive score will mean that the model performs better than climatology, and the
opposite will happen if it is negative (in which case the final model could default to climatology).

3.5.2 Calibration and validation procedure

The model has been evaluated according to its performance against climatology on a holdout test set
(which has been rotated and averaged using a 6-fold cross-validation). From the full record of the 18
years for which the emission data is available (2003-2020), the following holdout sets have been
randomly generated:

[2006, 2017, 2004] [2005, 2003, 2019] [2015, 2008, 2013]

[2007, 2011, 2012] [2020, 2016, 2010] [2018, 2009, 2014]

Within each FCR, the model is trained separately for each holdout (selecting different regression
coefficients in each case), with data from the years that are not included in said set, and evaluated
afterwards for the holdout years. Both training and testing scores from the six holdouts are averaged
to get a single score in each region for the training and testing periods.
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4 Results

The results of the training and testing scores for all the different models designed are shown for each
FCR. The results are presented in order of increasing complexity in the regression protocol.

The first model that was tested is the simple multivariate linear regression model, considering only
Cls as predictors (section 4.1) and focusing on the first forecast month, as it is the one for which the
best model performance is expected. Clearly better overall results were obtained when adding the
LASSO regularisation technique, which justified keeping the regularised model for the subsequent
tests (section 4.2). After that, we tested the impact of adding new types of predictors. Annual land
cover data was added and tested in section 4.3, and lagged emissions in section 4.4.

From the previous tests the best performing model is the LASSO regularized linear regression that
used Cls and lagged emissions as predictors (section 4.4.1).

We additionally evaluated the performance of the same model but four months ahead, to explore its
potential use as refined boundary conditions in actual seasonal predictions. In this case we thereby
used 4-month lagged emissions (instead of 1-month), and 4 to 12-month lagged Cls as predictors.
The two additional sections of results correspond to two different versions of the Random Forest
regression model. The first was implemented with the default parameters of the statistical package
considered (section 4.5.1), and the second considered an extra restriction which forced the
maximum depth of the trees used for the regression to be equal or lower than 2 (section 4.5.2). For
each version, the model was trained two times: one to make predictions 1-month ahead, and
another to make predictions 4-months ahead, similarly to the last versions of the LASSO regularised
model. The intention is to compare the performances for both methodologies, which are respectively
based on a non-linear and a linear model, using the same predictor selection. Likewise, in a final
section (4.6) we compare the metrics of predictor importance as identified by both methodologies,
to illustrate which predictors matter the most in the different FCR regions.

4.1 First results from a basic multivariate linear regression model

The first model is built with a basic multivariate linear regression method that uses only Cls as
predictors. The monthly results for the training and testing periods are grouped by seasons, and then
averaged for the 6 different holdout selections. The results are shown as spatial maps of the score
values for each FCR and season of the year. The colorbar is bounded to [-1,1] and centred so it shows
greater performance than climatology in regions shown in red, and blue otherwise.

These first results obtained with the simple multivariate linear regression model show a clear
example of overfitting. Training scores are very high for each season in almost all the FCRs (Figure 5).
However, the testing scores are predominantly negative (Figure 6), consistently showing much lower
performance than the climatological benchmark across all seasons and almost every FCR region. A
somewhat expected problem of this linear model is that it is built with such a large number of
predictors for the monthly fire emissions data that it can reproduce the predictand variability very
closely by learning spurious relationships with the predictors. As a result, the model performs very
poorly when tested outside of the training sample.
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(1,2,12)

Figure 5: Calibration scores for the basic multivariate linear regression model using only Cls (lagged by 1 to 12 months) as
predictors. Results are shown separately for winter (DJF; top left panel), spring (MAM; top right panel), summer (JJA; bottom
left panel) and autumn (SON; bottom right panel). In all cases, the scores are averaged for the 6 different holdouts.

(1,2,12)
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Figure 6: The same as in Figure 5 but for the test scores.

To deal with this issue, a LASSO regularisation that penalises the spurious predictors was
implemented into the regression model.

4.2 Improving the multivariate linear regression model via LASSO regularisation

The LASSO regularization is first added to the previous reggression model using only the Cls as
predictors. For the sake of simplicity, from now on, only results for boreal summer (JJA) and winter
(DJF) are shown. In this and the subsequent empirical models the major conclusions drawn from the
analysis of the winter/summer months are very similar to those from the analysis of the
autumn/spring months.
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Figure 7: Calibration scores in winter (DJF; left) and summer (JJA; right) for multivariate linear regression model with LASSO
regularization using only Cls (lagged by 1 to 12 months) as predictors. In all cases, the scores are averaged for the 6
different holdouts.

Figure 8: Test scores in winter (DJF; left) and summer (JJA; right) for multivariate linear regression model with LASSO
reqularization using only Cls (lagged by 1 to 12 months) as predictors. In all cases, the scores are averaged for the 6
different holdouts.

Adding the regularisation has a remarkable impact on the results. Training scores are notably lower
compared to the non-regularised model (Figure 7), and, more importantly, testing scores are
generally better for every season and almost every region (Figure 8). Some regions with certain
characteristics can be recognized from the maps. At the very northern latitudes, the model is unable
to find any predictive relationships in the winter months. This might be probably due to the lack of
fire emissions in said regions (e.g. Siberia) during the cold season. There are substantially more
regions that outperform the climatology benchmark than for the non-regularised case: for example,
the FCRs located in the Amazon basin in South America show positive testing scores in both the
boreal winter and summer months, which could derive from the large predictive role in local
precipitation associated with ENSO. Somewhat surprisingly, some FCRs show substantially higher test
scores than training scores (e.g. in Alaska in the summer months) which suggests that, despite the
6-fold cross-validation, the scores exhibit some level of uncertainty. It can also be seen that some
regions still have poor scores indicating no added value over the climatology, like Central Africa
during the boreal summer months, or Northern Asia in both seasons. Globally averaged results (Table
2, second row) confirm that the training scores are much lower than for the basic regression, as
expected, and that there is a great improvement of the testing scores. Nevertheless, we also note
that the total global scores are still negative, which is related to the fact that about 2 thirds of the
FCRs do not outperform the climatology benchmark. The mean test score remains negative also
when the global average is weighted by the accumulated emissions of each FCR (number in bracket
in Table 2).
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Table 2: Global average of scores and percentage of FCR for which the model outperforms the climatology benchmark in
each regression method performed. Prior to computing the global averages, scores for the individual FCRs are averaged for
the 4 seasons and the 6 holdout period selections. Values between brackets represent the same score averages/percentages
but weighting each FCR contribution by its associated total accumulated emissions in the study period.

Regression method Calibration scores Test scores global average % of positive FCRs
global average (weighted average) in the test period

(weighted average) (% of emissions)

Linear 0.6451 (0.6458) -2.6265  (-2.4101) 1.52 % (2.15%)

LASSO regularised 0.0876 (0.1006) -0.0049  (-0.0089) 35.72% (36.23%)

LASSO regularised 0.0876 (0.1006) -0.0049  (-0.0089) 35.72% (36.23%)

+ land cover

LASSO regularised 0.1058 (0.1234) 0.0421 (0.0622) 53.40% (57.05%)

+ emissions (t-1)

LASSO regularised 0.0761 (0.0872) -0.0006  (0.0052) 35.86 % (36.02%)

+ emissions (t-4)

Random Forest 0.7190 (0.7173) -0.0550  (-0.0181) 27.89% (29.73%)

+ emissions (t-1)

Random Forest 0.7167 (0.7142) -0.1165  (-0.0957) 18.11% (19.22%)

+ emissions (t-4)

Random Forest 0.3287 (0.3384) 0.0022  (0.0275) 35.50 % (38.13%)

+ emissions (t-1)

(opt. parameters)

Random Forest 0.3024 (0.3074) -0.0448  (-0.0347) 24.34 % (25.66%)
+ emissions (t-4)

(opt. parameters)

4.3 Enhancing the model with the inclusion of time-varying land cover

Results are now shown for a new regression model that is exactly the same as the one developed in
the previous section, but incorporating land cover data for the corresponding FCR as an additional
predictor.

(1,2,12)

Figure 9: Calibration scores for multivariate linear regression model with LASSO regularization using Cls (lagged by 1 to 12
months) and land cover as predictors. In all cases, the scores are averaged for the 6 different holdouts.
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(L, 2,12)

Figure 10: Test scores for multivariate linear regression model with LASSO regularization using Cls (lagged by 1 to 12
months) and land cover as predictors. In all cases, the scores are averaged for the 6 different holdouts.

Resulting maps are identical to the ones shown in the previous section (Figures 9 and 10 vs Figures 7
and 8), and the same happens when averaging the total scores (Table 2, second and third rows).
These identically distributed values with respect to the previous ones can only mean that the LASSO
regularisation gave zero coefficients to each of the land cover categories in every case, which implies
that the regression method did not detect any meaningful linear relationship (and therefore
predictive potential) between the land cover type variations and biomass burning emissions in the
different FCRs.

Based on these findings we decided to dismiss the use of this type of predictors in the subsequent
analyses, as they would add a computational burden to the regression, while adding no improvement
to the predictions.

4.4 Enhancing the model with the inclusion of lagged emissions as predictors

Emissions data are added as predictor features for two different predictive horizons. This is an
idealised exercise that explores to what extent these emissions could add predictive skill if their
corresponding observations were available in real time to be included in the forecasts.

4.4.1 Lag1 results

(1,2,12)

Figure 11: Calibration scores for multivariate linear regression model with LASSO regularization using Cls (lagged by 1 to 12
months) and 1-month lagged emissions as predictors. In all cases, the scores are averaged for the 6 different holdouts.

Figure 12: Test scores for multivariate linear regression model with LASSO regularization using Cls (lagged by 1 to 12
months) and 1-month lagged emissions as predictors. In all cases, the scores are averaged for the 6 different holdouts.
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The addition of emissions data from the previous month to the predictor list results in a notable
improvement with respect to the previous LASSO regularised models. It can be seen in the training
score maps (Figure 11 vs Figure 7), but more notably in the test scores maps (Figure 12 vs Figure 8),
that the regions where the model already performed better than climatology before adding the
lagged emissions as predictors are maintained. And in addition, some other regions where the model
previously underperformed the climatology benchmark now outperform it. This can be seen, for
example, across the whole Eurasiancontinent in the months of boreal summer. There are also regions
like South America and Australia where the regressions with lagged emissions show particularly
better scores, two zones in which biomass burning emissions showed high temporal autocorrelation
values at lag 1 (Figure 3). Interestingly, emissions with high autocorrelations at lag 1 do not guarantee
good test scores, with the most clear example being the African continent in the boreal summer, for
which only a few FCRs show positive score values.

The addition of lagged emissions data is also helpful in regions where none of the Cls data seemed to
have a predictive effect on the biomassburning events. Performance improvement in these regions is
attested by enhanced testing scores, which in a global average turn out to be greater than zero (Table
2), indicating that this model yields overall improvements with respect to the climatological
benchmark.

4.4.2 Llag4results

Figure 13: Calibration scores for multivariate linear regression model with LASSO regularization using Cls (lagged by 4 to 12
months) and 4-month lagged emissions as predictors. In all cases, the scores are averaged for the 6 different holdouts.

Figure 14: Test scores for multivariate linear regression model with LASSO regularization using Cls (lagged by 4 to 12
months) and 4-month lagged emissions as predictors. In all cases, the scores are averaged for the 6 different holdouts.

Results when we replicate the same method but with a set of predictors that precede the predictand
with 4-month to 12-month lags show a much more limited predictive potential. Even if the training
scores of the new model remain close to those of the regression model with 1-month lagged
predictors (Figures 11 and 13), the testing scores are substantially lower in the new regression model
(Figures 12 and 14), with only some sparse regions like the Amazon basin, Western Australia and
Southeast Asia showing positive scores consistently throughout the seasons. Table 2 indeed shows
that only 35% of all FCRs have positive test scores for the 4-month lagged predictions, which leads to
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a negative global value when averaging all FCRs. Interestingly, the averaged test score that weights
each FCR by its accumulated emissions is found to be positive, which indicates that the FCRs in
which the regression outperforms the climatology contribute more actively to the total emissions.

4.5 Results from a predictive model based on the random forest technique

The set of predictors tested for the LASSO regularised linear regression in Section 4.4.1 showed the
best performance when compared to the climatological reference. The same set of predictors is now
used to build a Random Forest Regression model, to check whether this non-linear approach can
improve the previous results. First, a regression with the default parameters of the random forest
routine is performed.

4.5.1 Results with default random forest parameters

(1,2,12)

Figure 15: Calibration scores for Random Forest regression model using Cls (lagged by 1 to 12 months) and 1-month lagged
emissions as predictors. In all cases, the scores are averaged for the 6 different holdouts.

(1,2,12)

Figure 16: Test scores for Random Forest regression model using Cls (lagged by 1 to 12 months) and 1-month lagged
emissions as predictors. In all cases, the scores are averaged for the 6 different holdouts.

When the model is trained with this default configuration to predict biomass burning emissions one
month ahead, it consistently yields very good training scores (Figure 15), but it does not translate
into good performance in the testing scores, which are more contrasted between regions (Figure 16).
Compared with results from the linear models, the random forest test scores tend to be larger in
magnitude and also noisier, with neighbouring FCRs seldom showing large and opposing scores. Also,
the number of regions where the model performs better than the climatology is substantially lower
than the number of regions in which it is outperformed by it, as shown in Table 2. In general, this
results in very poor globally averaged testing scores. Results are very similar, but with slightly worse
scores when predicting the biomass burning emissions 4 months ahead (Figures 17 and 18).
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(1,2,12)

Figure 17: Calibration scores for Random Forest regression model using Cls (lagged by 4 to 12 months) and 4-month lagged
emissions as predictors. In all cases, the scores are averaged for the 6 different holdouts.

(1,2,12)

Figure 18: Test scores for Random Forest regression model using Cls (lagged by 4 to 12 months) and 4-month lagged
emissions as predictors. In all cases, the scores are averaged for the 6 different holdouts.

4.5.2 Results with optimised random forest parameters

Figure 19: Calibration scores for Random Forest regression model (opt. parameters) using Cls (lagged by 1 to 12 months)
and 1-month lagged emissions as predictors. In all cases, the scores are averaged for the 6 different holdouts.

(1,2,12)

Figure 20: Test scores for Random Forest regression model (opt. parameters) using Cls (lagged by 1 to 12 months) and
1-month lagged emissions as predictors. In all cases, the scores are averaged for the 6 different holdouts.

A characteristic of the standard configuration for the random forest routine from the scikit-learn
package is that its maximum depth parameter allows for very deep trees. This is known to frequently
lead to overfitting, since deep trees always depict more complex predictive algorithms, which in
some cases can cause trees to produce very weak testing results (contrasting with very high training
scores), while the real connection mechanism between the predictors (or features) and the
predictand is usually less intricate. The Random Forest method relies on averaging between all trees
created to avoid this problem, but it can also be helpful to limit the maximum depth number for all
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the trees in order to achieve a higher testing accuracy. This is particularly advantageous when the
signal-to-noise ratio in the data is low as in our case (Zhou and Mentch, 2022).

Results for the same model but now forcing the maximum depth of the trees to be lower or equal
than 2 show enhanced predictions of biomass burning emissions 1 month ahead in many regions
(Figure 20), raising the globally averaged test score to a positive value (Table 2), which becomes even
larger when the average is weighted by the accumulated FCR emissions. However, both the test score
values and the percentage of regions where the regression model outperforms the climatological
benchmark are considerably lower for this optimised random forest model than for the analogous
case with the LASSO regularised model. The linear model is then currently preferred because it can
capture predictive skill over more regions in the world.

(1,2,12)
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Figure 21: Calibration scores for Random Forest regression model (opt. parameters) using Cls (lagged by 4 to 12 months)
and 4-month lagged emissions as predictors. In all cases, the scores are averaged for the 6 different holdouts.

(1,2,12)

Figure 22: Test scores for Random Forest regression model (opt. parameters) using Cls (lagged by 4 to 12 months) and
4-month lagged emissions as predictors. In all cases, the scores are averaged for the 6 different holdouts.

Conclusions are once again very similar when performing predictions 4 months ahead (compare
Figure 20 with Figure 22).

4.6 Assessing how the relative importance of the predictors varies regionally

To compare the predictive power of the different predictors, and whether it is consistent across
methods, we now plot the predictor importance for the best performing models of both the linear
regression with LASSO regularisation, and the optimised Random Forest regression (Figure 23). This
importance corresponds to the absolute value of the regression coefficient in the linear regression,
and to the feature importance value in the Random Forest regression. For each predictor and FCR we
plot the maximum importance value achieved from the 12 lags considered (except for the emissions
that only consider the 1 month lag). Overall, both methods yield similar regions with high/low
predictive power (i.e. importance values) for all the predictors. Lagged emissions show by large the
highest predictive power worldwide, with the AMO showing by contrast the lowest predictive role,
especially for the Random Forest regressions. From the rest of the Cls, the Indian ocean indices, the
PDO and the NAO show many regions worldwide with relatively large importance values, which
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extend beyond their typically reported areas of influence. By contrast, El Nifio indices (and especially
those defined more to the east) tend to show comparatively weaker importance values all around
the world, including in the American continent, where it is known to exert an important influence.
This might be due to the strong seasonality of ENSO influences, which cannot be fully captured with
our methodological approach. It is also possible that, given the short time span of the study period,
the indices exhibiting larger weights are those which happen to have similar trends than the
emissions data, which would explain why indices like ENSO, that mostly varies at shorter
(interannual) timescales, have comparatively weaker importance.
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Figure 23: Predictor importance, represented as the absolute value of the regression coefficients (for the linear regression
with LASSO regularisation; left) or the feature importance (for the optimised Random Forest regression; right) for each
predictor, considering the lag for which it is maximum. All values are derived for the regressions using Cls (lagged by 1 to 12
months) and 1-month lagged emissions as predictors.
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Figure 23: (Continuation)
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5 Conclusions

5.1 Main results and lessons learned

- Due to the large availability of predictors and the relatively short time span of the
observational datasets, the use of simple linear regressions led to strong overfitting.
Introducing a method that identified and penalised the spurious predictors, like the LASSO
regularisation technique, was needed to overcome this problem. For the non-linear
approaches (i.e. the Random Forest regression), a key methodological decision to minimise
overfitting and improve the actual performance was to lower to 2 the maximum permitted
depth for each of the decision trees.

- The main result of the study is that the addition of lagged emissions greatly improved the
performance of the regression models, especially in areas where Cls showed no predictive
capacity. Only when both lagged emissions and Cls were considered did the model beat the
climatological benchmark in a majority of FCRs.

- The predictive capacity of the methods was found to vary considerably between FCRs. Some
FCRs (e.g. Australia, the Amazon basin) generally showed good performance scores while
other FCRs showed negative or rather weak positive test scores (e.g. Northern North
America). A compromise solution to minimise the chances of performing spurious
predictions could be to use climatological emissions in FCRs in which the regression models
consistently show poor testing scores (that is, only using the regressions on the regions that
work effectively).

- Land cover features did not show any useful predictive relationships with the biomass
burning emissions.

- The linear model with a LASSO regularisation and 1-month lagged emissions added as a
predictor was the best performing model, improving the climatology benchmark on more
than half of the total emissions and outperforming climatology in general.

- To introduce some seasonality in the predictions, we did some tests including the months as
predictors. However, for this rather simplistic approach the coefficients associated with these
seasonality predictors were completely negligible in both the regularised linear model and
the Random Forest regression model. The appropriate way to take seasonality into account
would be to build different regression models for the biomass burning emissions of each
month of the year, something that we tried but that yielded very poor performance because
it reduced the training sample to 15 points (one for each calendar year not included as
holdout). Such models could be built in the future when much longer datasets of emissions
data become available.

5.2 Ideas for the follow-up

- We could aggregate the emissions over larger spatial domains to reduce the noise, and thus
retain more predictable signals. Indeed, some of the Fire Cohesive Regions currently
considered can be too small compared with the areas that are typically affected by CI
variations via atmospheric teleconnections. Geographical regions defined in GFED (Global
Fire Emissions Database) were considered, but those regions are, on the contrary, too big
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and not self-consistent like the FCRs. Defining regions of an intermediate size that still
describe self-consistent emissions (e.g. by merging nearby regions whose emissions correlate
significantly) would be the ideal way forward.

- The ad-hoc score considered in this analysis to evaluate the quality of the regression models
is not as easily interpretable as other more common metrics, such as temporal correlations
or the mean square error skill score, in particular when comparing results from different
methodologies. To be able to apply more standard metrics, we are considering the
implementation of leave-one-out cross-validation, which also has the advantage of providing
a single test score that accounts for the model performance for the whole study period.

- Introducing standard metrics would also help to assess the statistical significance of the
results, and identify the FCRs for which the regression models are truly skilful.

- A detailed analysis of the stability of the regression coefficients/weights across the different
holdouts could provide additional information on the regions and regression methods that
yield more reliable results.

- Predictions with 4-month-lagged emissions and Cls lagged from 1 to 12 months (which we
performed but did not show) had better performance that those in which the Cls lags from 1
to 3 months are not considered. If this improved performance is confirmed to be statistically
significant, future developments could consider the use of Cl predictions from the
operational seasonal forecasts to provide the information of the months corresponding to
lags 1 to 3 when making predictions of biomass burning emissions 4 months ahead, provided
that the seasonal predictions are skilful for those Cl. This approach, however, would need
additional work to determine how to take into account the uncertainty in the Cl values in the
ensemble predictions, and whether the forecast Cls would require a recalibration of the
regression models.
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